Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Origins of Our Solar System

31.01.2012
Second funding period for DFG priority programme coordinated by Heidelberg scientists

After positive evaluation by an international team of experts, the Priority Programme (SPP 1385) “The First Ten Million Years of the Solar System” supported by the German Research Council (DFG) has now embarked on its second funding period with twelve new projects on board.

The programme is coordinated by Prof. Dr. Mario Trieloff of Heidelberg University and Prof. Dr. Klaus Mezger of the University of Bern (Switzerland) and at present comprises 45 research projects, ten of them in Heidelberg. The aim of the scientists involved in SPP 1385 is to analyse extraterrestrial material such as meteorites for what it can tell them about the planet formation process taking place 4.5 billion years ago. The DFG is providing approx. EUR 5.5 million for the continuation of the research work, of which EUR 1.2 million has been allocated to Heidelberg.

The goal of the projects in the first funding period was to deepen our understanding of the way planets form. “Planets are the very basis of life as we know it,” says earth scientist Mario Trieloff. “But the formation process involved is still surrounded by many mysteries. For example, from meteorites we are familiar with the first centimetre-sized mineral aggregates in the solar system, but we know very little about how they formed.” In the course of time, dust particles mere micrometres in diameter clump together to form “whoppers” several metres in diameter or even asteroids and comets that can be kilometres in size. But we still do not know whether the time scale involved in their formation was thousands or millions of years. Also unanswered is the question of how the Earth formed out of a number of smaller protoplanets or where the water on Earth came from. According to Prof. Trieloff, major progress towards the solution of these issues has already been made in the first funding period.

The investigations of the priority programme revolve crucially around material from small bodies like asteroids and comets, the point being that they have not evolved to the formation of a large planet but have remained at the level of small planets called planetesimals. “This means that they have preserved the unchanged relics of dust and rock composition on the way to larger planetary bodies,” says Prof. Trieloff. In this connection, the scientists are investigating sample material from meteorites and comets as well as interstellar material from which the first small bodies and planetesimals took shape. Isotopic dating is used to define more closely the span of time in which asteroids hundred of kilometres across achieved their present dimensions. In addition, the scientists are looking into the heating and the chemical and physical development of planetesimals.

For the first two years of the research work being done in the framework of SPP 1385, 36 projects with a funding volume of approx. EUR 4 million were approved. Of these, 33 are to be continued and supplemented by the 12 new projects. According to coordinators Mario Trieloff and Klaus Mezger, the international evaluation panel ranked the priority programme as being on the same level as the thematically similar cosmochemistry programme of NASA. In their evaluation report, they anticipated that the large proportion of young scientists involved would contribute to the development of new approaches that might be pioneering in the international context. The ten Heidelberg projects are conducted at the University’s Institute for Earth Sciences, Centre for Astronomy and Kirchhoff Institute for Physics and the Max Planck Institutes for Astronomy and for Nuclear Physics. The research projects of the entire programme are spread out over 16 locations in Germany plus the Institute of Geological Sciences at the University of Bern.

For more information, go to http://www.rzuser.uni-heidelberg.de/~ia2

Contact
Apl. Prof. Dr. Mario Trieloff
Institute for Earth Sciences
phone: +49 6221 54-6022
mario.trieloff@geow.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:
http://www.rzuser.uni-heidelberg.de/~ia2

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>