Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon physicists use geometry to understand 'jamming' process

21.03.2014

New study allows scientists to visualize why free-moving objects jam when compressed

University of Oregon physicists using a supercomputer and mathematically rich formulas have captured fundamental insights about what happens when objects moving freely jam to a standstill.

Their approach captures jamming -- the point at which objects come together too tightly to move -- by identifying geometric signatures. The payoff, while likely far down the road, could be a roadmap to preventing overfilled conveyor belts from stopping in factories, separating oil deposits trapped in sand, or allowing for the rapid, efficient transfer of mass quantities of data packets on the Internet, say UO doctoral student Peter K. Morse and physics professor Eric I. Corwin.

Their paper "Geometric Signatures of Jamming in the Mechanical Vacuum" is online ahead of print in the journal Physical Review Letters.

"The history of the field has been looking at mechanical properties really close to the jamming transition, right where a sand pile starts to push back," said Corwin, whose research is supported by a National Science Foundation Faculty Early Career Development award. "What we're doing that is really different is we're asking what happens before the sand pile starts to push back. When it's not pushing back, you can't get any information about its mechanical properties. So, instead, we're looking at the geometry -- where particles are in relation to one another."

The problem, Corwin said, involves an ages-old question used to introduce physics in early education: Is sand a liquid, a solid or a gas? "Make a sand pile, step back and it holds its shape, so clearly it's a solid," he said. "But I can take that same sand and pour it into a bucket; it flows in and takes the shape of the container and has a level surface, so clearly sand is a liquid. Or I can put a top on the bucket and shake it around really hard, and when I do that the sand fills all of the space. Clearly sand is a gas. Except, it's none of those things.

"This has led to granular materials, or little chunks of things, being referred to as a fourth state of matter," he continued. "Is sand something else? One thing everyone agrees on -- the one feature about sand or piles of gravel or piles of glass spheres or ball bearings, that makes them really unique -- is that when spread out they can't support any load. If you keep compressing them, and they get denser and denser, you reach a density where it's like flipping a switch. All of a sudden they can support a load."

The key, the researchers said, is identifying the nearest neighbors of particles. This is done using the Voronoi construction, a method of dividing spaces into a number of regions that was devised by Georgy Feodosevich Voronoy, a Russian mathematician in the late 19th century.

"Imagine a cluster of islands in the ocean," Morse said. "If you found yourself dropped in the water you would swim to the nearest island. You could say that the island 'owns' the region of ocean closest to it and islands that 'own' adjacent patches of ocean are nearest neighbors. We use this to characterize the internal geometry of a sand pile."

To study what happens to this internal geometry as a sand pile is compressed, they entered data into the UO's new ACISS (Applied Computational Instrument for Scientific Synthesis) supercomputer, applying the Voronoi construction.

"Using these cells, called Voronoi tesslations, you can find out all you want to know about a geometric object -- its volume, surface area, number of sides -- you get it all," said Morse, who also is a fellow of the UO's GK-12 Science Outreach Program that links chemistry and physics graduate students with the state's elementary and middle schools. "All of the geometric features that we can think of so far show us that systems below jamming are very different than systems that are about to jam or that are jammed already. We end up finding that this purely geometric construct will exhibit this phase transition."

And by carrying out their computations into multidimensional spaces -- up to the eighth dimension in this project -- researchers learned that the physics of the jamming process can be simply identified by seeing what happens in the transition from 2-D to 3-D spaces. It's at that level, applying the knowledge to high-dimensional spaces, Corwin said, that application to expanding data transfer capabilities come into focus.

"The new ACISS supercomputer puts the UO at the forefront of a revolution that applies cloud computing to scientific investigation in physics, biology, chemistry, human brain science and computer science," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. "By incorporating the powerful ACISS computer into this project, Dr. Corwin and his team were able to examine the geometry of jamming and provide a new perspective on the process that has potential applications down the road for everything from manufacturing to computing to power production."

###

NSF grants DMR-1255370 and DGE-0742540 supported the research.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources: Eric Corwin assistant professor of physics, 541-346-4697 (lab), ecorwin@uoregon.edu; Peter Morse, doctoral student, physics, 541-346-4697, peterm@uoregon.edu

Links:

Paper: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.115701

Corwin faculty page: http://physics.uoregon.edu/profile/ecorwin/

GK-12 Science Outreach Program: http://materialscience.uoregon.edu/GK12/Overview.html

UO Physics Department: http://physics.uoregon.edu/

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_Research

More UO Science/Research News: http://uoresearch.uoregon.edu

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Jim Barlow | EurekAlert!

Further reports about: Outreach construction geometry materials physics properties transition

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>