Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronic Inline Measurement – Accurate to the Nanometer

14.06.2017

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products


INSPIRE sensors for testing shape and positional tolerances on camshafts.

Fraunhofer ILT, Aachen, Germany.

Implementing innovative concepts, such as for more efficient engines, mostly accompanies with advances in manufacturing technologies. Production tolerances of modern plants thus suffice to process metal components in the micrometer range and are just a thousandth of a millimeter thick. At the same time, a plant must be highly flexible so it can compensate for any fluctuations in raw materials and manufacture a wide range of products. That is why production technology’s next aim is to have plants that can manufacture individual components with the precision and at the cost of mass production.

Laser Measurement Technology as a Key Component

Sensors that can work precisely and reliably even under unfavorable conditions are paramount to monitoring and regulating such manufacturing processes. Interferometers are used under laboratory conditions to measure the shape of components with the highest precision – for example, thickness of sheet metal, roundness of rollers, and eccentricity of waves. In fact, Interferometers are so precise that they can be used to determine not just the component’s shape but also its surface roughness.

Sensors with Digitized Expert Knowledge

To this end, an interferometer’s settings must be adapted precisely to the measurement task at hand. This especially requires correct exposure time and focus; similar to taking a photo. In April this year, the collaborative project INSPIRE was started with the aim of developing an interferometer that can adapt to varying measuring conditions. “The sensors will have digitized expert knowledge and can autonomously optimize the settings,” explains Dr. Hölters from Fraunhofer ILT in Aachen. He coordinates the INSPIRE project, in which four other small and medium-sized enterprises are participating. With the development of fast control electronics, the sensors can adapt to rapidly changing measuring conditions within microseconds. This development will benefit conventional processes such as the cold rolling of sheet metal as well as machining processes such as welding.

Collaborative Project INSPIRE

The project idea of “Interferometric Distance Sensors with Automated Subsystems for Precision Inline Measurement to Regulate Automated Manufacturing Processes,” which in German produces the acronym INSPIRE, convinced the German Federal Ministry of Education and Research (BMBF) to pledge half the funding for the three-year long collaborative project as part of the “Digital Optics” funding initiative. Companies participating in the INSPIRE project are LSA – Laser Analytical Systems & Automation GmbH and Beratron GmbH from Aachen, HIGHYAG Lasertechnologie GmbH from Kleinmachnow, and Friedrich Vollmer Feinmessgerätebau GmbH from Hagen.

Contact

Dr. rer. nat. Stefan Hölters
Clinical Diagnostics and Microsurgical Systems Group
Phone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/2J5
http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT INSPIRE Inline Laser Lasertechnik Manufacturing Nanometer Sensors

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>