Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical quantum transistor using single atoms

13.05.2010
Physicists at MPQ control the optical properties of a single atom!

Due to the continued miniaturization of computer chip components, we are about to cross a fundamental boundary where technology can no longer rely on the laws of the macroscopic world. With this in mind, scientists all over the world are researching technologies based on quantum effects that can be used to communicate and process information.

One of the most promising developments in this direction are quantum networks in which single photons communicate the information between different nodes, e.g. single atoms. There the information can be stored and processed. A key element in these systems is Electromagnetically Induced Transparency (EIT), an effect that allows to radically change the optical properties of an atomic medium by means of light.

Previously, scientists have studied this effect and its amazing properties, using atomic ensembles with hundreds of thousands of atoms. Now, scientists in the group of Prof. Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics (MPQ) in Garching and Head of the Quantum Dynamics Division, have managed to control the optical response of a single atom using laser light (Nature, Advanced Online Publication, DOI: 10.1038 /nature09093 May 2010). While representing a corner stone in the development of new quantum based technologies, these results are also fundamental for the understanding of how the quantum behaviour of single atoms can be controlled with light.

Electromagnetically Induced Transparency (EIT) describes the effect, that the interaction of an atomic medium with a weak laser field can be controlled and manipulated coherently with a second, strong laser field. Practically, this is achieved by irradiating the medium with two laser beams: the action of a strong control laser causes the medium to become transparent for a weak probe laser. The properties derived from EIT allow the storing and retrieval of information between an atomic sample and light pulses, thus providing a powerful interface between photonic information and stationary atoms.

In all experiments performed so far, the medium was made of a very large number of atoms. In contrast, in the experiment described here only a single Rubidium atom is addressed. The atom is trapped inside a high-finesse optical cavity in order to amplify the atom-light interaction such that atom and cavity form a strongly coupled system. Then the transmission of laser light – the probe laser – incident on the cavity axis is measured. When there is no atom inside the cavity, the laser light is transmitted. On the other hand, the presence of the atom causes the light to be reflected, and the transmission drops (see Fig. 1a). With an additional control laser of very high intensity applied transverse to the cavity axis, the single-atom EIT condition is achieved and maximum transmission is recovered (See Fig. 1b). The single atom effectively acts as a quantum optical transistor, coherently controlling the transmission of light through the cavity.

In addition, the team of Prof. Rempe succeeded in performing EIT experiments when more atoms were added inside the cavity, one by one in a very controlled way. “Using EIT with a controlled number of atoms provides the possibility to manipulate many quantum properties of light fields transmitted by the cavity”, says Martin Mücke, who works on this experiment as a doctoral student. “Usually photons don’t interact with each other. With this scheme we may be able to achieve a long sought goal: strong interaction between photons, mediated by a single atom. Such a set-up is a potential building block for a working quantum computer.” Olivia Meyer-Streng

Original publication:
Electromagnetically induced transparency with single atoms in a cavity
M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas and G. Rempe.

Nature, Advance Online Publication, DOI: 10.1038/nature09093, May 2010

Contact:
Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 – 311
e-mail: gerhard.rempe@mpq.mpg.de
Dr. Eden Figueroa
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 241
e-mail: eden.figueroa@mpq.mpg.de
Dipl. Phys. Martin Mücke
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 356
e-mail: martin.muecke@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>