Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One impurity to bind them all

02.06.2016

MPQ researchers show that a single atomic impurity is able to trap infinitely many bosons around it.

Nobody is perfect, but sometimes it is the defect that makes the difference. For example, the electric properties of semiconductors undergo significant changes by the slightest variation in the dopant concentration, and though a perfect diamond is without any colour, atomic impurities make them shine in pale blue, violet or pink which even enhances their value.


Illustration of the trapping process: a two-level atomic impurity is localized in a periodic structure. Because the atomic frequency lies in the bandgap of the material the photons that are released after excitation of the atom are trapped inside the structure. Graphic: MPQ, Theory Division

All these effects go back to processes that are triggered by the interaction of the impurity with the quantum many-body system it is embedded in. A team of physicists in the Theory Division of Prof. Ignacio Cirac at the Max Planck Institute of Quantum Optics (MPQ) has now investigated the more general case where an impurity atom is coupled to a structured bath of bosons (for example, photons in a periodically engineered dielectric) showing how a single atom can bind many bosons around it.

Bound states of bosons are of particular interest because they give rise to long and strong interactions enabling new regimes for quantum simulations. (Phys. Rev. X 6, 021027 (2016), 25 May 2016).

The interaction of spin impurities with bosonic reservoirs lies at the heart of very paradigmatic models in Quantum Optics and Condensed Matter and gives rise to very rich phenomena. For example, in the context of atoms coupled to engineered dielectrics, i.e., photonic crystals, it was predicted that a single atom can localize a single-photon cloud around it if the atomic frequency lies in the photonic bandgap of the material.

With the recent advances in interfacing atomic systems with photonic crystal structures, these atom-photon bound states have experienced a renewed interest in the context of quantum simulation as they have been proposed to mediate strong and long-range interactions between atoms.

In their newly published work, Tao Shi, Ying-Hai Wu and Alejandro González-Tudela from the Theory Division of Prof. Ignacio Cirac study the general problem of a single spin impurity coupled to a generic bosonic bath and show that a single atom can indeed trap not a single, but infinitely many bosons around it. Loosely speaking, the coupling of the impurity to the bath generates an effective potential to the bosons that is able to localize the bosons around it.

In particular, a single atom can localize a multi-photon cloud around it within a photonic crystal. Moreover, the authors also provide a variational description that allows them to describe their behaviour in all parameter space, unveiling the existence of many different regimes with different scaling of physical properties like the energy or the size of the bound states.

Due to the generality of the model, these bound states can potentially be prepared and observed in many different platforms, ranging from atoms coupled to photonic crystals to circuit QED or even cold atoms in state dependent optical lattices. The existence of these boson bound states spans the possibilities of these platforms to simulate new exotic many-body phenomena. [AGT/OM]

Original publication:

Tao Shi, Ying-Hai Wu, A. González-Tudela, and J. I. Cirac
Bound states in boson impurity models
Phys. Rev. X 6, 021027 (2016), 25 May 2016

Contact:

Prof. Dr. J. Ignacio Cirac
Honorary Professor TU Munich and
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -705 /-736
Fax: +49 (0)89 / 32 905 -336
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Alejandro González-Tudela
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -127
E-mail: alejandro.gonzalez-tudela@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>