An older Vega: New insights about the star all others are measured by

The researchers estimated Vega's age by precisely measuring its spin speed with a tool called the Michigan Infrared Combiner, developed by John Monnier, associate professor of astronomy in U-M's College of Literature, Science, and the Arts.

MIRC collects the light gathered by six telescopes to make it appear to be coming through one that's 100 times larger than the Hubble Space Telescope. It's installed at the Georgia State Center for High Angular Resolution Astronomy Array located on Mt. Wilson, California.

The tool boosts resolution so astronomers can zoom in, relatively speaking, to observe the shape and surface characteristics of stars that would otherwise look like mere points even through the most powerful telescopes. By tracking stars' surface characteristics, scientists can calculate how fast they rotate and deduce their inner workings.

Vega is a summer star in the Northern Hemisphere, just visible toward the west at sunset. It's the brightest star in the constellation Lyra. At 25 light years away, Vega is close on cosmic scales. A light year is the distance light travels in one year.

About six years ago astronomers discovered that Vega is rotating so fast it's nearly flinging itself apart. They haven't been able to agree on many of the related details, however. One of the debates centers on Vega's exact rotation rate, which is essential to gauge both its mass and age. Other controversies deal with Vega's tilt as viewed from Earth and the amount of turbulence in the system from roiling gases at the star's surface.

With MIRC's unprecedented resolution, Monnier and his colleagues have taken steps to rectify competing estimates of Vega's rotation rate and other properties The new findings indicate that the star rotates once every 17 hours, rather than once every 12. The sun's equator, for comparison, rotates much slower—once every 27 days, or 648 hours. In addition to finding that Vega is older than previously thought, the Michigan group confirmed its mass to be just over two times the sun's.

“Vega continues to challenge and surprise us,” Monnier said. “We found out not too long ago that it has a disk of dusty debris, or a leftover solar system, around it. Then we found out it was a rapid rotator. It's a reference point for other stars, but it certainly isn't boring or normal.”

The work will help astronomers build more accurate computer models of stars, so they can simulate those too far away to observe and gain a better understanding of their life cycles.

A paper on the findings is published in the current edition of Astrophysical Journal Letters. It's titled “Resolving Vega and the inclination controversy with CHARA/MIRC.” The research is funded by the National Science Foundation and NASA.

John Monnier: http://dept.astro.lsa.umich.edu/~monnier

Media Contact

Nicole Casal Moore EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors