Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of harps, Christmas trees, a wandering star and the mysterious streams of cosmic rays

19.12.2019

Researchers at the Leibniz Institute for Astrophysics in Potsdam (AIP), and the Max Planck Institute for Astrophysics in Garching (MPA), have investigated galactic radio objects that adopt shapes such as Christmas trees and harps. With the help of these objects, the old question of how cosmic radiation propagates could be answered.

The inner region of our Milky Way galaxy is characterised by large amounts of warm gas, cosmic-rays and enhanced radio emission. “Astronomers have been observing planar radio-emitting magnetised structures in the galactic centre for almost twenty years.


Radio synchrotron harp and Christmas tree in the galactic centre.

T. Thomas (AIP) / MeerKat

Recent observations with the MeerKAT telescope in South Africa show that these are organised into groups of almost parallel filaments, that span over a length of several light years,” reports Timon Thomas from the AIP, the leading author of the study.

“The filaments are seemingly sorted by their length, so that they look like the strings of a harp.” Hence, researchers from Potsdam and Garching called these objects radio synchrotron harps. Synchrotron is the name of the mechanism that generates the radio emission. It arises when charged particles like electrons are accelerated in magnetic fields.

“The observed structures are created when massive stars or pulsars fly through an ordered magnetic field and discharge cosmic ray particles along their path into these magnetic fields,” explains co-author Christoph Pfrommer from AIP. “The particles propagate along the magnetic field lines, usually transverse to the stellar orbit, causing the magnetic fields in the radio regime to light up and appear like the strings of a harp.”

So far, the exact transport process of the particles along these strings has been a mystery. The researchers now assume that the individual strings show a chronological sequence in which the particles have spread along the magnetic field lines from their point of release.

If this propagation was a diffusion process, the structures seen in the radio observations should have rounded bell shapes, but they do not. By measuring one of the harps and performing detailed model calculations, the astrophysicists were able to show that streaming must be the most important transport process of cosmic rays.

“The particles "pluck" the strings and stimulate the magnetic fields to oscillate, which in turn hold the particles together to form a streaming fluid,” explains Torsten Enßlin from the MPA, the initiator of the study.

With this illuminating Advent insight, the decades-old mystery of the transport of cosmic ray particles has been solved. Contrary to the previous assumption of diffusing particles, it turns out that they mainly stream.

Wissenschaftliche Ansprechpartner:

Timon Thomas, +49 331 7499 531, tthomas@aip.de,
Christoph Pfrommer, +49 331 7499 513, cpfrommer@aip.de,
Torsten Enßlin, +49 89 30000 2243 ensslin@mpa-garching.mpg.de

Originalpublikation:

1. Probing Cosmic Ray Transport with Radio Synchrotron Harps in the Galactic Center. Timon Thomas, Christoph Pfrommer, and Torsten Enßlin, preprint: https://arxiv.org/abs/1912.08491
2. Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event. Heywood, I., Camilo, F., Cotton, W. D., et al. (2019), Nature, 573, 235

Dr. Janine Fohlmeister | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Laserphysics: At the pulse of a light wave
13.01.2020 | Ludwig-Maximilians-Universität München

nachricht Explosion or collapse?
13.01.2020 | Helmholtz Association

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

Im Focus: LZH’s MOMA laser ready for the flight to Mars

One last time on Earth it has been turned on in France in December 2019. The next time the MOMA laser developed by the Laser Zentrum Hannover e.V. (LZH) is going into operation will be on Mars. The ExoMars rover into which the laser is integrated has now successfully passed the thermal vacuum tests at Airbus in Toulouse, France.

For 18 days the ExoMars rover Rosalind Franklin was subjected to thermal vacuum tests at Airbus. There, it had to withstand strong changes in temperature and...

Im Focus: Atacama Desert: A newly discovered biocoenosis of lichens, fungi and algae shapes entire landscapes

The Atacama Desert in Chile is the oldest and most arid desert on earth. Organisms living in this area have adapted to the extreme conditions over thousands of years. A research team led by Dr Patrick Jung has now discovered and investigated a previously unknown biocoenosis of lichens, fungi, cyanobacteria and algae. It colonises tiny stones, so-called grit and its need for water is satisfied by fog and dew. These organisms also decompose the rock on and in which they live. The scientists believe that this is how they have shaped the landscape of the Atacama Desert. Their study was published in the renowned scientific journal "Gebiology".

Many desert areas have large black spots in the sand. These spots are mineral deposits, so-called desert varnish. In the Atacama Desert, which can be compared...

Im Focus: Nano antennas for data transfer

For the first time, physicists from the University of Würzburg have successfully converted electrical signals into photons and radiated them in specific directions using a low-footprint optical antenna that is only 800 nanometres in size.

Directional antennas convert electrical signals to radio waves and emit them in a particular direction, allowing increased performance and reduced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

International Coral Reef Symposium 2020 Holds Photo Competition

19.12.2019 | Event News

The Future of Work

03.12.2019 | Event News

 
Latest News

Man versus machine: Can AI do science?

14.01.2020 | Information Technology

Cell growth: Intricate network of potential new regulatory mechanisms has been decoded

14.01.2020 | Life Sciences

How nodules stay on top at the bottom of the sea

14.01.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>