Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New observations of exploding stars reveal pauses, flickers and flares not reliably seen before

06.12.2010
Astronomers have traced the waxing and waning light of exploding stars more closely than ever before and seen patterns that aren't yet accounted for in our current understanding of how these eruptions occur.

Using data from a sensitive instrument aboard a satellite that images the entire sky every 102 minutes, they studied four of these stars, or novae, that exploded so violently their light would have been visible without a telescope and measured their brightness over the course of the outburst.

Three of the novae stalled before reaching a peak, and all flickered or flared as the explosions ran their course, they report in The Astrophysical Journal.

The instrument they used – the Solar Mass Ejection Imager – was developed by a team led by astrophysicist Bernard Jackson at the Center for Astrophysics and Space Sciences at the University of California, San Diego, to study the sun. Rebekah Hounsell, a graduate student at Liverpool John Moores University in Britain made the measurements while visiting UC San Diego.

Because starlight is a distraction for Jackson's team, noise they must subtract from their data so that they can focus on the sun's outer corona and the heliosphere, they make detailed maps of stellar light, including its brightness.

In those maps Hounsell identified the four novae by finding points of light that rapidly brightened and dimmed over the course of days.

Wavering Light

Other astronomers had observed a pause in the brightening of novae, or "pre-maximum halt" before, but some thought it an anomaly. The precise time-scale and repeated observations of the current study confirms it, they authors say.

"The reality of this halt as found in all three of the fast-declining novae observed is a challenge to detailed models of the nova outburst," said one of the authors, astrophysicist Mike Bode, of Liverpool John Moores University.

Two independent teams of theorists have already begun to refine their models of how novae explode in response.

Astronomers typically characterize novae's changing light with curves smoothly fit to more sporadic observations, but the rapid cadence of the solar imager captured glimmers that hadn't been observed before. All flickered as their light dimmed and one nova, the slowest of the four to dim, flared brightly twice after reaching its peak luminosity.

These novae are white dwarf stars that steal matter, in the form of hydrogen, from a companion star, often an aging, expanding red giant. As hydrogen accumulates the white dwarf's gravity pulls it in and condenses it until it ignites, setting off a runaway nuclear fusion reaction.

The team speculates that the post-peak flares may correspond to changes in the dynamics of that reaction that still need to be explained.

Catching Missing Stars

"Before Hounsell looked through these data, most novae were observed only after their peak luminance. The instrument's very even cadences and uniformly exposed images allow us to trace the entire evolution of these explosions as they brighten and dim," UC San Diego's Jackson said.

Data from the imager, which has been in operation aboard the Coriolis satellite since January 2003, allows astronomers to measure novae that they initially missed.

"Even today novae are mainly discovered by amateur astronomers around the world who then alert their professional counterparts to conduct observations," Hounsell said.

As many as five novae bright enough to be detected by SMEI explode in our galaxy each year, Allen Shafter, astronomy professor at San Diego State University and one of the co-authors of the report have previously estimated, but more than half have gone undetected.

"The instrument assures that the brightest and most rapidly evolving novae – ones that brighten and then fade within a few days – are not overlooked," Shafter said. "The high time resolution of these observations has opened up a new window into the study of novae in our galaxy."

Bernard Jackson's research at UC San Diego is supported by the National Science Foundation and NASA. Allen Shafter's work at San Diego State University is supported by the National Science Foundation.

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>