Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation of intervalley transitions can boost valleytronic science and technology

18.05.2020

UC Riverside-led research shows these transitions can emit light

An international research team led by scientists at the University of California, Riverside, has observed light emission from a new type of transition between electronic valleys, known as intervalley transmissions.


Image shows intervalley exciton light emission from monolayer WSe2. Monolayer WSe2 consists of a two-dimensional array of tungsten atoms (cyan balls) and selenium atoms (yellow balls). Its conduction and valence energy bands exhibit two valleys with opposite electron spins (red and blue cups). An electron (green ball) and a hole (purple ball) in the opposite valleys can be bound to form an intervalley exciton (orange-yellow ellipsoid), which decays to emit light with circular polarization (red spiral).

Credit: Erfu Liu, UC Riverside

The research provides a new way to read out valley information, potentially leading to new types of devices.

Current semiconductor technology uses electronic charge or spin to store and process information; the associated technologies are called electronics and spintronics, respectively.

Some semiconductors contain local energy valleys in their electron band structure that can be used to encode, process, and store information, giving rise to a new kind of technology called valleytronics.

"Valleytronics provides an alternative route to engineer information systems besides the conventional electronics and spintronics," said Chun Hung "Joshua" Lui, an assistant professor in the Department of Physics and Astronomy at UC Riverside, who led the research on intervalley transitions in monolayer tungsten diselenide (WSe2). "Our new work can speed up the development of valleytronics."

Monolayer WSe2 is a promising valleytronic material because it possesses two valleys with opposite dynamic characteristics in the band structure. Moreover, this material can interact strongly with light, holding promise for optically controllable valleytronic applications.

Excitons

When monolayer WSe2 absorbs a photon, a bound electron can be freed in a valley, leaving behind an electron vacancy, or hole. As the hole behaves like an electron with positive charge, the electron and hole can attract each other to form a bound state called an exciton.

Such an exciton, with both its electron and hole in the same valley, is called an intravalley exciton. Current exciton research in monolayer valley semiconductors focuses predominantly on intravalley excitons, which can emit light.

An electron and a hole in opposite valleys can also form an exciton, called an intervalley exciton, which is a novel component in valleytronics. The law of momentum conservation, however, forbids an electron and a hole in opposite valleys from recombining directly to emit light. As a result, intervalley excitons are "dark" and hidden in the optical spectrum.

The UCR-led research team has now observed light emission from intervalley excitons in monolayer WSe2. The team found that although the intervalley excitons are intrinsically dark, they can emit a significant amount of light with the assistance of either defects or lattice vibrations in the material.

"The scattering with defects or lattice vibrations can compensate for the momentum mismatch between an electron and a hole in opposite valleys," Lui said. "It allows us to observe the light emission of intervalley excitons."

"Although the process involves scattering with defects or lattice vibrations, the intervalley light emission is circularly polarized," said Erfu Liu, a postdoctoral researcher in Lui's lab and the first author of the research paper. "Such circular light polarization allows us to identify the exciton valley configuration. This optically readable valley configuration is crucial to making intervalley excitons useful for valleytronic applications."

Trions

Besides the excitons, monolayer WSe2 also hosts trions, which consist of two electrons and one hole or two holes and one electron. Trions also have well-defined valley configurations for valleytronic applications. Compared to the charge-neutral excitons, the motion of trions can be controlled by an electric field due to their net electrical charge.

A trion can generally decay through two paths. For example, for a trion consisting of an intravalley electron-hole pair and a hole in the opposite valley to decay, the electron can choose to recombine with the hole in the same valley or with the hole in the opposite valley. This gives rise to two different trion decay paths with intravalley and intervalley electron-hole recombination. The intravalley trion decay has been much studied, but the intervalley trion decay has not been reported thus far.

The UCR-led team has shown intervalley trion decay for the first time.

"Although a trion can decay through either intravalley or intervalley decay, the two transitions have the same energy and can hardly be distinguished in the optical spectrum," Lui said. "But when a magnetic field is applied, the energies of the intravalley and intervalley transitions will become different."

The team carried out the experiments at the National High Magnetic Field Laboratory in Tallahassee, Florida. They show both the intravalley and intervalley decay paths of the trions.

"Our results provide a more complete, multipath picture of trion dynamics in monolayer WSe2," said Jeremiah van Baren, a graduate student in Lui's lab, who shares equal authorship with Liu. "They build on the existing single-path description of trions in 2-D materials and are key to furthering trion-based valleytronic science and technology."

The research paper, published in Physical Review Letters, is titled "Multipath optical recombination of intervalley dark excitons and trions in monolayer WSe2." Related results were recently reported by two other research teams led by scientists at Rensselaer Polytechnic Institute and the University of Washington.

###

Lui, a recent recipient of the National Science Foundation's prestigious Faculty Early Career Development (CAREER) Award; Liu, and van Baren were joined in the study by Nathaniel Gabor of UC Riverside; Ching-Tang Liang and Yia-Chung Chang of the Research Center for Applied Sciences at the Academia Sinica in Taipei, Taiwan; and Takashi Taniguchi and Kenji Watanabe of the National Institute for Materials Science in Tsukuba, Japan.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email news@ucr.edu.

Media Contact

Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050

 @UCRiverside

http://www.ucr.edu 

Iqbal Pittalwala | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.124.196802

More articles from Physics and Astronomy:

nachricht Scientists break the link between a quantum material's spin and orbital states
18.05.2020 | DOE/SLAC National Accelerator Laboratory

nachricht 'Hot and messy' entanglement of 15 trillion atoms
15.05.2020 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

Im Focus: 'Hot and messy' entanglement of 15 trillion atoms

Quantum entanglement is a process by which microscopic objects like electrons or atoms lose their individuality to become better coordinated with each other. Entanglement is at the heart of quantum technologies that promise large advances in computing, communications and sensing, for example detecting gravitational waves.

Entangled states are famously fragile: in most cases even a tiny disturbance will undo the entanglement. For this reason, current quantum technologies take...

Im Focus: A new, highly sensitive chemical sensor uses protein nanowires

UMass Amherst team introduces high-performing 'green' electronic sensor

Writing in the journal NanoResearch, a team at the University of Massachusetts Amherst reports this week that they have developed bioelectronic ammonia gas...

Im Focus: Surgery Training with Robots and Virtual Reality

Joint press release from the University of Bremen and Chemnitz University of Technology

The insertion of hip implants places high demands on surgeons. To help young doctors practice this operation under realistic conditions, scientists from the...

Im Focus: Technology innovation for neurology: Brain signal measurement using printed tattoo electrodes

TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

In 2015 Francesco Greco, head of the Laboratory of Applied Materials for Printed and Soft electronics (LAMPSe, http://lampselab.com/) at the Institute of Solid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

How to design city streets more fairly

18.05.2020 | Studies and Analyses

When proteins work together, but travel alone

18.05.2020 | Life Sciences

Emissions from road construction could be halved using today’s technology

18.05.2020 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>