Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU physicists make room for oddballs

05.08.2009
New research on random packing could mean big advance for industry

Here's a question. How many gumballs of different sizes can fit in one of those containers at the mall so as to reward a well-spent quarter? It's hard to believe that most people never consider it even when guessing the number of candies in a bowl at Halloween.

But physicists at the Materials Research Science and Engineering Center at New York University recently developed a new way to help answer the question. They say the solution is found in how the particles pack in terms of many neighboring gumballs a single gumball can randomly touch within a given container.

Though it may seem intuitive, confirming the answer has long proven elusive because of super complex geometry when dealing with three-dimensional objects of mixed sizes and shapes. But in a recent breakthrough, researchers Maxime Clusel, Eric Corwin and Alex Siemens led by NYU physics professor Jasna Brujic, derived and tested a statistical model that potentially could help industry sort through a variety of packing problems from gumballs in vending machines to grain storage in silos or dry clothes detergent in retail boxes.

"We have discovered a simple organizing principle for particulate packing that predicts our experimental findings," said Brujic. The latest issue of the journal Nature reports the findings. The National Science Foundation funds the research.

The new model predicts the geometry of randomly packing spheres of different sizes in terms of how many nearest neighbors a particle can have, how far apart those neighbors can be and how free space is distributed throughout the packing. It does all this by determining geometric possibilities from the viewpoint of a single particle, which the authors term the "granocentric" view.

"Bigger particles pack with more neighbors, while smaller particles have on average fewer neighbors," said Corwin, a postdoctoral research fellow. "By combining this simple insight with probabilistic mathematics we created an accurate model demonstrating how this organizing rule gives rise to packings where particles have a wide range or distribution of contacts, neighbors and local densities."

The research team used a two step process to verify the model. First they used a 3-D microscope to spy how oil droplets packed together in water. The research enabled the team to determine the number of nearest neighbors the oil droplets could have and other parameters. Then they compared what they found to what was predicted by the statistical model.

"We were surprised to find that such a simple model, based on physical intuition alone, could capture the properties of a complex packing of droplets in an emulsion," Brujic said.

The model predicted the percentage of space occupied by the particles in a container, such that researchers could statistically estimate the number of particles without knowing all the positions of the particles.

The structure of a packing of spheres of equal size is an old problem, whose complexity has challenged mathematicians and physicists for centuries. At first one would think that the structure of packings of spheres of random sizes is even more complex, but surprisingly, the researchers discovered that this is not the case.

The results could be used in a variety of industrial packing processes. For example, the model could be used to determine how finely to mill medicines that pharmaceutical companies pack into drug capsules, producing more effective pills that are smaller and easier to swallow.

"Packing problems are ubiquitious in industry," said Corwin. "An unexpected area of application might be to the world of paint creation. Paint is composed of small particles of pigment suspended in a fluid. As the fluid evaporates the particles are packed tighter and tighter, slowing down the evaporation of the fluid. Thus, one could tune the distribution of particle sizes to achieve paint with particular drying characteristics."

The research was conducted at NYU's Center for Soft Matter.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>