Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU Courant researchers develop algebraic model to monitor cellular change

02.11.2010
Researchers at New York University's Courant Institute of Mathematical Sciences have developed a novel algebraic model of DNA "hybridization," a process central to most biotechnology devices that monitor changes in cell's gene expression or characterize a cell's genome.

Their work, which is described in the journal Physical Review E, provides an additional tool for understanding how biological systems function and could enhance methods and designs of technologies used in cancer and genetics research.

Biology researchers seek to measure cell activity, but the task is a challenging one because of its complexity—a cell has so many facets, all taking place simultaneously, that it is difficult to measure the behavior of its individual parts. Genes that do not necessarily affect each other inside a cell can disturb each others' measurements in a biotechnology device.

To get around these obstacles, the NYU researchers focused on how a cell's most basic components are measured—its DNA and RNA. Specifically, they used a cell's gene expressions as a "tagging system" to monitor cell behavior at its most fundamental level.

For this purpose, they focused on microarray technology in which researchers first gather data on the make-up of RNA molecules in two steps: RNA is first converted into cDNA, or "copy DNA," and then measured by hybridization.

However, the researchers' initial work involved not experiments, but, rather, the creation of mathematical models to predict "DNA-cDNA duplex formation." They developed an algebraic computation that allowed them to model arbitrary DNA-cDNA duplex formation, and, with it, measurements of cellular behavior. Specifically, they assigned to various chemical properties of DNA strands different algebraic values (e.g., "K," "X," "Y"). They then ran a series of computations that resulted in expressing how "matches" or "mismatches" among various strands of DNA can be characterized by the input algebraic variables. These computations could then be used directly to design the most accurate biotechnology for measuring cellular behavior.

To confirm the validity of these algebraic models, the researchers conducted laboratory experiments involving the hybridization of DNA sequences. These results largely confirmed those predicted by the mathematical models—the DNA sequences in the laboratory matched up in most instances in ways the models forecast.

The study's co-authors were: Vera Cherepinsky, a former post-doctoral fellow at NYU's Courant Institute of Mathematical Sciences and currently in the Department of Mathematics and Computer Science at Fairfield University; Ghazala Hashmi of BioArray Solutions, Ltd.; and Bud Mishra, a professor of computer science and mathematics and a principal investigator in Courant Bioinformatics Group.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>