Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NuSTAR helps solve riddle of black hole spin

28.02.2013
An international team including Lawrence Livermore National Laboratory scientists has definitively measured the spin rate of a supermassive black hole for the first time.

The findings, made by the two X-ray space observatories, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency's XMM-Newton, solve a long-standing debate about similar measurements in other black holes and will lead to a better understanding of how black holes and galaxies evolve.


This artist's concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. In this illustration, the supermassive black hole at the center is surrounded by matter flowing onto the black hole in what is termed an accretion disk. This disk forms as the dust and gas in the galaxy falls onto the hole, attracted by its gravity. Also shown is an outflowing jet of energetic particles, believed to be powered by the black hole's spin. Image courtesy of NASA/JPL-Caltech.

"We can trace matter as it swirls into a black hole using X-rays emitted from regions very close to the black hole," said Fiona Harrison, NuSTAR principal investigator at the California Institute of Technology, Pasadena, and coauthor of a new study appearing in the Feb. 28 edition of Nature. "The radiation we see is warped and distorted by the motions of particles, and by the black hole's incredibly strong gravity."

The formation of supermassive black holes is thought to mirror the formation of the galaxy itself, since a fraction of all the matter drawn into the galaxy finds its way into the black hole. Because of this, astronomers are interested in measuring the spin rates of black holes in the hearts of galaxies.

The observations also are a powerful test of Einstein's theory of general relativity, which holds that gravity can bend light and space-time. The X-ray telescopes detected these warping effects in the most extreme of environments, where the immense gravity field of a black hole is severely altering space-time.

NuSTAR, a NASA Explorer-class mission launched in June of 2012, is uniquely designed to detect the highest-energy X-ray light in great detail. For Livermore, the predecessor to NuSTAR was a balloon-borne instrument known as HEFT (the High Energy Focusing Telescope) that was funded, in part, by a Laboratory Directed Research and Development investment beginning in 2001. NuSTAR takes HEFT's X-ray focusing abilities and sends them beyond Earth's atmosphere on a satellite. The optics design and the manufacturing process for NuSTAR are based on those used to build the HEFT telescopes.

NuSTAR complements telescopes that observe lower-energy X-ray light, such as the European Space Agency's (ESA's) XMM-Newton and NASA's Chandra X-ray Observatory. Scientists use these and other telescopes to estimate the rates at which black holes spin.

"We know that black holes have a strong link to their host galaxy," said astrophysicist Bill Craig, a member of the LLNL team. "Measuring the spin, one of the few things we can directly measure from a black hole, will give us clues to understanding this fundamental relationship."

The team used NuSTAR to observe X-rays emitted by hot gas in a disc just outside the "event horizon," the boundary surrounding a black hole beyond which nothing, including light, can escape.

Previous measurements were uncertain because obscuring clouds around the black holes could, in theory, have been confusing the results. By working together with XMM-Newton, NuSTAR was able to see a broader range of X-ray energy, penetrating deeper into the region around the black hole. The new observations ruled out the idea of obscuring clouds, demonstrating that spin rates of supermassive black holes can be determined conclusively.

"This is hugely important to the field of black hole science," said Lou Kaluzienski, NuSTAR program scientist at NASA Headquarters in Washington, D.C. "NASA and ESA telescopes tackled this problem together. In tandem with the lower-energy X-ray observations carried out with XMM-Newton, NuSTAR's unprecedented capabilities for measuring the higher energy X-rays provided an essential, missing puzzle piece for unraveling this problem."

NuSTAR and XMM-Newton simultaneously observed the two-million-solar-mass supermassive black hole lying at the dust and gas-filled heart of a galaxy called NGC 1365. The results showed that the black hole is spinning close to the maximal rate allowed by Einstein's theory of gravity.

"These monsters, with masses from millions to billions of times that of the sun, are formed as small seeds in the early universe and then grow by swallowing stars and gas in their host galaxies, and/or merging with other giant black holes when galaxies collide," said Guido Risaliti, lead author of the new study from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. and the Italian National Institute for Astrophysics. "Measuring the spin of a supermassive black hole is fundamental to understanding its past history and that of its host galaxy."

More Information

NASA NuSTAR

European Space Agency -- XMM Newton

"NuSTAR opens out of this world view thanks to Lab technology," LLNL news story, June 13, 2012.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2013/Feb/NR-13-02-08.html

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>