Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NuSTAR Discovers Impossibly Bright Dead Star

09.10.2014

X-ray source in the Cigar Galaxy is the first ultraluminous pulsar ever detected

Astronomers working with NASA's Nuclear Spectroscopic Telescope Array (NuSTAR), led by Caltech's Fiona Harrison, have found a pulsating dead star beaming with the energy of about 10 million suns. The object, previously thought to be a black hole because it is so powerful, is in fact a pulsar—the incredibly dense rotating remains of a star.

"This compact little stellar remnant is a real powerhouse. We've never seen anything quite like it," says Harrison, NuSTAR's principal investigator and the Benjamin M. Rosen Professor of Physics at Caltech. "We all thought an object with that much energy had to be a black hole."

Dom Walton, a postdoctoral scholar at Caltech who works with NuSTAR data, says that with its extreme energy, this pulsar takes the top prize in the weirdness category. Pulsars are typically between one and two times the mass of the sun. This new pulsar presumably falls in that same range but shines about 100 times brighter than theory suggests something of its mass should be able to.

"We've never seen a pulsar even close to being this bright," Walton says. "Honestly, we don't know how this happens, and theorists will be chewing on it for a long time." Besides being weird, the finding will help scientists better understand a class of very bright X-ray sources, called ultraluminous X-ray sources (ULXs).

Harrison, Walton, and their colleagues describe NuSTAR's detection of this first ultraluminous pulsar in a paper that appears in the current issue of Nature.

"This was certainly an unexpected discovery," says Harrison. "In fact, we were looking for something else entirely when we found this."

Earlier this year, astronomers in London detected a spectacular, once-in-a-century supernova (dubbed SN2014J) in a relatively nearby galaxy known as Messier 82 (M82), or the Cigar Galaxy, 12 million light-years away. Because of the rarity of that event, telescopes around the world and in space adjusted their gaze to study the aftermath of the explosion in detail.

Besides the supernova, M82 harbors a number of other ULXs. When Matteo Bachetti of the Université de Toulouse in France, the lead author of this new paper, took a closer look at these ULXs in NuSTAR's data, he discovered that something in the galaxy was pulsing, or flashing light.

"That was a big surprise," Harrison says. "For decades everybody has thought these ultraluminous X-ray sources had to be black holes. But black holes don't have a way to create this pulsing."

But pulsars do. They are like giant magnets that emit radiation from their magnetic poles. As they rotate, an outside observer with an X-ray telescope, situated at the right angle, would see flashes of powerful light as the beam swept periodically across the observer's field of view, like a lighthouse beacon.

The reason most astronomers had assumed black holes were powering ULXs is that these X-ray sources are so incredibly bright. Black holes can be anywhere from 10 to billions of times the mass of the sun, making their gravitational tug much stronger than that of a pulsar. As matter falls onto the black hole the gravitational energy turns it to heat, which creates X-ray light. The bigger the black hole, the more energy there is to make the object shine.

Surprised to see the flashes coming from M82, the NuSTAR team checked and rechecked the data. The flashes were really there, with a pulse showing up every 1.37 seconds.

The next step was to figure out which X-ray source was producing the flashes. Walton and several other Caltech researchers analyzed the data from NuSTAR and a second NASA X-ray telescope, Chandra, to rule out about 25 different X-ray sources, finally settling on a ULX known as M82X-2 as the source of the flashes.

With the pulsar and its location within M82 identified, there are still many questions left to answer. It is many times higher than the Eddington limit, a basic physics guideline that sets an upper limit on the brightness that an object of a given mass should be able to achieve.

"This is the most extreme violation of that limit that we've ever seen," says Walton. "We have known that things can go above that by a small amount, but this blows that limit away."

NuSTAR is particularly well-suited to make discoveries like this one. Not only does the space telescope see high-energy X-rays, but it sees them in a unique way. Rather than snapping images the way that your cell-phone camera does—by integrating the light such that images blur if you move—NuSTAR detects individual particles of X-ray light and marks when they are measured. That allows the team to do timing analyses and, in this case, to see that the light from the ULX was coming in pulses.

Now that the NuSTAR team has shown that this ULX is a pulsar, Harrison points out that many other known ULXs may in fact be pulsars as well. "Everybody had assumed all of these sources were black holes," she says. "Now I think people have to go back to the drawing board and decide whether that's really true. This could just be a very unique, strange object, or it could be that they're not that uncommon. We just don't know. We need more observations to see if other ULXs are pulsing."

Along with Harrison and Walton, additional Caltech authors on the paper, "An Ultraluminous X-ray Source Powered by An Accreting Neutron Star," are postdoctoral scholars Felix Fürst, and Shriharsh Tendulkar; research scientists Brian W. Grefenstette and Vikram Rana; and Shri Kulkarni, the John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science and director of the Caltech Optical Observatories. The work was supported by NASA and made use of data supplied by the UK Swift Science Data Centre at the University of Leicester.

Written by Kimm Fesenmaier

This illustration depicts a pulsar pulling in material from a companion. The strong magnetic fields surrounding the pulsar funnel the infalling material onto two spots above and below the stellar core. This causes the material to heat up to extreme temperatures and release X-rays. As the star rotates, the two X-ray hot spots behave like a lamp in a lighthouse, sweeping around. Credit: NASA/JPL-Caltech

Deborah Williams-Hedges | Eurek Alert!
Further information:
http://www.caltech.edu/content/nustar-discovers-impossibly-bright-dead-star

Further reports about: M82 NASA NuSTAR X-ray X-ray light black hole gravitational

More articles from Physics and Astronomy:

nachricht Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
22.10.2019 | Tata Institute of Fundamental Research

nachricht A cavity leads to a strong interaction between light and matter
22.10.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>