Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL researchers' golden touch enhances quantum technology

30.01.2020

Scientists at the U.S. Naval Research Laboratory discovered a new platform for quantum technologies by suspending two-dimensional (2-D) crystals over pores in a slab of gold. This new approach may help develop new materials for secure communication and sensing technologies based on the unique laws of physics at the atomic levels.

"We never expected these atomically thin materials could influence the ordering of all of the atoms in such a relatively large slab of gold," said Jeremy Robinson, a materials research scientist at NRL. "When heated, the metal reflows to form a porous structure and the gold atoms lock into registry with the atoms in the 2-D layer on top."


Suspended two-dimensional crystals over pores in a slab of gold (center image) allow NRL scientists to connect quantum light sources (inset images) in a ready-made network.

Credit: Jeremy Robinson/U.S. Naval Research Laboratory

The research team expected to observe dewetting, a process resulting from interaction between surfaces of two solids. Instead of droplets forming on the glass base underneath the gold, heating caused a reorientation of the underlying metal slab. The gold became porous throughout and this physical change led researchers to test for other side effects of the merger.

"We also discovered this combination can create a large number of quantum light sources in a, sort of, ready-made network," said Andrew Yeats, research physicist at NRL. "The alignment between atomic layers may facilitate energy transfer between the emitters through the gold framework that connects them."

Researchers verified light emanating from the 2-D semiconductors comes out as single light particles, or photons. These emitters can transfer energy to each other through the gold layer.

"We shine light on one part of the sample and we look at the light coming off at another part," Robinson said. "This teaches us how energy can be coupled into the gold layer at one point, propagated to a different quantum emitter site far away and re-emitted as light that we could see."

The ability to remotely control the piping of energy to a single-photon emitter makes this an attractive system for quantum technology.

"As we get better at controlling how the 2-D semiconductor interacts with pores in the metal film, it's easy to imagine different technologies that could use these properties." Robinson said. "Sensors are a good first target, which can take advantage of the atomically thin membranes stretched across the porous metal framework."

While researchers conducted this work using a gold slab underneath the thin semiconductor layer, other metals can respond the same way as the gold. The NRL team continues to investigate how various material combinations and structures can create single photon sources with unique properties, a key component of secure communications.

###

Learn more information about quantum technology at: https://www.nature.com/articles/s41467-019-13857-0

About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the Navy and Marine Corps from the seafloor to space and in the information domain. NRL headquarters is located in Washington, D.C., with major field sites in Stennis Space Center, Mississippi, Key West, Florida, and Monterey, California, and employs approximately 2,500 civilian scientists, engineers and support personnel.

Media Contact

Maria Estacion
maria.estacion@nrl.navy.mil
202-404-6422

 @USNRL

http://www.nrl.navy.mil 

Maria Estacion | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-019-13857-0

More articles from Physics and Astronomy:

nachricht New gravitational-wave model can bring neutron stars into even sharper focus
22.05.2020 | University of Birmingham

nachricht Electrons break rotational symmetry in exotic low-temp superconductor
20.05.2020 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>