Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers

30.05.2018

NIST researchers have developed a compact, high-accuracy, point-of-use high-power laser power meter in the form of a folding mirror called 'Smart Mirror,' making in-situ, real-time measurement of laser power possible

High-power lasers are now widely used in additive manufacturing and laser welding systems to precisely cut and weld metal, making all kinds of metal parts for medical devices, aerospace applications, automotive industries, and more.


This mirror is a force scale that relates the force of a laser shining on it to the power (i.e., the brightness) of that laser. Scientists at NIST are developing these devices to embed into laser-based manufacturing tools for improved performance and reliability. The device in this picture is a prototype of their capacitive pressure sensor designed to measure 1,000 W lasers in the infrared with better than 1% uncertainty. The next phase of devices like this one will be standard reference instruments that report absolute power of any color laser from 1 mW up to 100 kW of power.

Credit: A. Artusio-Glimpse/NIST >alexandra.artusio-glimpse@nist.gov<

With the rise in industrial use of high-power laser processing, manufacturers increasingly seek high-accuracy, point-of-use laser power meters that can quickly report laser powers at any time in the manufacturing process -- a vital aspect to controlling product quality.

Traditional laser power meters, however, are often bulky in size and slow in response time. Power measurements can also only be taken separately, interrupting the manufacturing process.

Now, a group of researchers from National Institute of Standards and Technology (NIST) in Boulder, Colorado, have developed a smaller, faster and more sensitive laser power meter in the form of a folding mirror they call a "smart mirror."

The novel design uses a capacitor-based force transducer and merges optical elements, namely a high reflectivity mirror, and sensing elements into a compact cube package. The four-centimeter-on-a-side cubes can be conveniently embedded into laser optical systems or laser-welding systems for point-of-use, real-time laser power measurement and calibration. The researchers will present their innovation at the OSA Imaging and Applied Optics Congress, being held June 25-28 in Orlando, Florida, United States.

"Measuring laser power by measuring the pressure of a laser beam hitting a mirror is a very unique technique, [and] so far it is the only laser power measurement technique that is truly an in-situ process," said Alexandera B. Artusio-Glimpse, a scientist of NIST in Boulder, Colorado, and the primary author. "Unlike any other optical power measurement techniques, our method allows us to continue using the laser for work while a measurement is being taken."

Artusio-Glimpse explained that traditional high-power meters measure laser power by absorbing all the energy of a laser beam as heat and measuring the temperature change. The calorimetric measurement has to temporarily stop the laser beam from work for around tens of minutes.

"Using our 'Smart Mirror' laser power meter, that stop-measure-continue process is no longer needed. Manufacturers can measure the laser power continuously during every weld and monitor the laser calibration in real time, they would know right away whenever the laser has a problem and wouldn't risk wasting metal parts with bad welds," Artusio-Glimpse said.

The Smart Mirror laser power meter is also referred to as a radiation pressure power meter (RPPM), as the operating principle of this meter is based on measuring the pressure of the laser, the radiation pressure. Light has no mass, but it has momentum and when a laser beam strikes an object such as a mirror, it will exert a tiny force known as the radiation pressure on the mirror, which directly relates to the laser power. 200 watts of laser power, for example, exerts a force equivalent to 100 micrograms, which is roughly the weight of a single human eyelash.

The key part of the Smart Mirror design is a capacitor-based compact force transducer. It consists of a spiral planar silicon spring supporting a circular plate with a high reflectivity mirror on one side and an electrode on the other. An identical silicon spring with an electrode is placed close to the first spring such that the two electrodes face each other, forming a variable capacitor.

A laser beam reflecting off the mirror on the first spring will push the first spring to move toward the second and change the capacitance between the two electrodes. By comparing to a fixed reference capacitor, the researchers can calculate the radiation pressure and laser power. After reflecting off the mirror, the laser beam can be used directly for work, making real-time monitoring of laser power or laser calibration possible.

According to Artusio-Glimpse, the team has been developing the novel radiation pressure power meter for years and an earlier version of RPPM employed a commercially available scale with a mirrored surface as a force transducer. The final system was about the size of a shoebox, with a measurement sensitivity of 50 micrograms and response time of five seconds.

In the new version of the Smart Mirror, the researchers improved the measurement sensitivity by 100 times and decreased the response time by 50 times. They also mitigated static sagging errors of the device caused by gravity when the device is rotated. This allows the sensor to be embedded at the end of a robotic arm or in additive manufacturing and laser welding systems where the laser head will move and rotate -- a key feature that the early version bulk RPPM lacks. It also meets the measurement requirements of many commercially significant applications.

Based on preliminary tests, the new meter is sensitive enough to measure 100 watts of laser power with no more than one percent uncertainty, and with a response time faster than any other absolute high-power laser meter. The researchers are now continuing to validate these results with more tests. Artusio-Glimpse said the NIST team expects to establish a primary standard version of the Smart Mirror laser power meter in the near future.

Hear from the research team: ATh2A.2 "Non-Absorbing, Point-of-Use, High-Power Laser Power Meter," by Alexandra B. Artusio-Glimpse, Ivan Ryger, Paul Williams and John Lehman, at 10:30 am on June 28, 2018, at the Wyndham Orlando Resort International Drive, Orlando, Florida, United States.

###

MEDIA REGISTRATION: Media/analyst registration for the OSA Imaging and Applied Optics Conference 2018 can be accessed online. Further information is available on the event website, including travel details.

ABOUT OSA IMAGING AND APPLIED OPTICS CONGRESS

Imaging and Applied Optics Congress provides a comprehensive view of the latest developments in imaging and applied optical sciences, covering the forefront advances in imaging and applied optics as well as the application of these technologies to important industrial, military and medical challenges. The scope of the research presented in ranges from fundamental research to applied. General Chair for the 2018 Congress is Gisele Bennett, Florida Institute of Technology, USA.

Media Contact

Azalea Coste
acoste@osa.org
202-416-1435

 @opticalsociety

http://www.osa.org 

Azalea Coste | EurekAlert!
Further information:
https://www.osa.org/en-us/about_osa/newsroom/news_releases/2018/novel_power_meter_opens_the_door_for_in-situ_real

More articles from Physics and Astronomy:

nachricht Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites
03.08.2020 | Universität Bayreuth

nachricht Surprising number of exoplanets could host life
31.07.2020 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites

03.08.2020 | Physics and Astronomy

Improving the monitoring of ship emissions

03.08.2020 | Ecology, The Environment and Conservation

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>