Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Membrane Lasers: Cool by Diamond

22.03.2017

Researchers from Stuttgart are paving the way for a new generation of semiconductor lasers

Lasers became popular with movies like „Star Wars“ or „James Bond“. In reality, lasers are incredibly versatile applicable tools. Physicists of the University of Stuttgart succeeded with a technological breakthrough which will extend the choice of by semiconductor lasers accessible wavelengths. This in turn will facilitate new applications.


diamond-semiconductor-sandwich in the laboratory setup

Photo: University of Stuttgart/ Hermann Kahle

Today, depending on their power, beam quality and wavelength, lasers are used, e.g., for cutting and welding of a variety of materials or as a sensor that scans the data stored on DVDs or Blu-Ray Disks.

Due to their compactness semiconductor lasers are particularly suited to be integrated in complex devices. However, semiconductor laser diodes have several drawbacks compared to other laser systems like gas lasers or solid-state lasers:

The output power of such laser systems cannot be reached and the intensity distribution of the emitted beam strongly deviates from the optimum Gaussian beam which describes the best possible focusing capability. This focusing capability by the way is the crucial parameter to efficiently couple a laser beam into an optical fiber.

The invention of the solid-state-thin disk laser, also from scientists of the University of Stuttgart some years ago, fructifies also the area of semiconductor-based lasers. The disk laser concept improves the heat dissipation from the laser medium drastically preventing an early overheating or even its destruction. The operational limits of such systems are shifted by this to much higher powers.


By realizing semiconductor lasers as disk lasers these devices are in no way inferior in terms of beam quality compared to conventional systems like yttrium-aluminum-garnet-lasers or helium-neon-lasers. This for example is essential in the modern medical technology for minimum invasive surgeries with optical fibers.

How can semiconductor disk lasers further be improved in terms of output power without losing their other wonderful properties? Scientists from the “Institut für Halbleiteroptik und Funktionelle Grenzflächen” around Prof. Dr. Peter Michler and from the “Institut für Strahlwerkzeuge” around Prof. Dr. Thomas Graf and Dr. Uwe Brauch examined this issue.

The key solution sounds simple and is consequent though challenging as it is in most cases when going into practice. Semiconductors themselves are poor thermal conductors. So one has just to omit all parts of the semiconductor structure not essentially necessary to build up a whole laser: the substrate on which the semiconductor layers are deposited has no function during laser operation and can be removed. External mirrors can replace the semiconductor mirror, integrated in all semiconductor disk lasers.

The only thing left of the semiconductor component is the several few hundreds of nanometers thick laser active region which gets sandwiched between two diamond disks. Diamond – transparent and the best thermal conductor available – is suitable in an outstanding way as an integrated heat spreader. The PhD-Students Hermann Kahle and Cherry May Mateo started with wet-chemical etching processes to isolate the laser active region from its substrate. The semiconductor membrane, in total thickness only one eightieth of the diameter of a regular human hair, can be stored and best handled when submerged in a liquid only.

The exciting thing at the end was to transfer the membrane onto a diamond disk which is four millimeter in diameter and 0.5 millimeter in thickness. Likewise, it has to keep in one piece, centered to the diamond and totally flat. And, there was never a second chance. Once bonded to the diamond by capillary forces it was impossible to remove the membrane again without destroying it. Laboratory work like this requires calm hands, lots of skill and endurance.

“We had to start again and again very often but in the end the efforts paid off.” The completed diamond-semiconductor-sandwich was then inserted into a laser resonator and characterized in the optics laboratory. After hours of adjustment work it flashed and the membrane laser was operating. A strong light beam in the red spectral range was emitted after a little more fine adjustment. And, it showed all characteristics we had hoped for: the tunability of the laser wavelength during operation, a perfectly shaped beam profile and especially a for semiconductor lasers high output power; and all this at an operating temperature of 10°C. Without the diamond sandwich the semiconductor membrane would rapidly overheat and stop to operate. Before this approach the whole semiconductor disk laser device sometimes had to be cooled down to minus 30°C.

An important intermediate target has been successfully accomplished; detailed work starts now. The data gained until now attest the scientists that they have developed an attractive novel laser system carrying further benefits. Omitting the integrated semiconductor mirror a performance hampering heat barrier disappeared. Furthermore, this extends the accessible emission wavelengths as material intrinsic absorption effects of the semiconductor mirror also disappear. The formerly integrated semiconductor mirror builds up the laser resonator together with an external mirror. This resonator is essential for laser operation. Now the integrated mirror is replaced by an additional external mirror to complete the laser resonator.

In future we will be able to realize further lasers with this technology which up to now have been impossible to realize as compact semiconductor based lasers operating in colors like yellow or orange. Even physicians can be looking forward to this. In the medium term new fiber coupled lasers for the photodynamic therapy could be available, operating at room temperature. Additionally, these lasers are tunable in emission wavelength and can be adjusted to the wavelength necessary for the used light sensitive drug due to the beneficial characteristics of semiconductors.

“We are asked occasionally if the light saber from Star Wars will be available soon.” Science-fiction fans need not to worry: “We’re working on that.”

Ansprechpartner:

Referenzen:
Semiconductor membrane external-cavity surface-emitting laser (MECSEL)
Hermann Kahle, Cherry May N. Mateo, Uwe Brauch, Philipp Tatar-Mathes, Roman Bek, Michael Jetter, Thomas Graf, and Peter Michler,
Optica 3, 1506-1512 (2016).
URL: https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-3-12-1506&id=35...

LaserFocusWorld®:
URL: http://www.laserfocusworld.com/articles/print/volume-53/issue-01/features/photon...

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-stuttgart.de/en/university/news/press-release/Neuartige_Halbleiter-Membran-Laser/

More articles from Physics and Astronomy:

nachricht PPPL diagnostic is key to world record of German fusion experiment
10.07.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht Breaking the bond: To take part or not?
09.07.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

Manipulating single atoms with an electron beam

10.07.2018 | Power and Electrical Engineering

Generating electrical power from waste heat

10.07.2018 | Power and Electrical Engineering

Every Person Has a Unique Brain Anatomy

10.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>