Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Membrane Lasers: Cool by Diamond

22.03.2017

Researchers from Stuttgart are paving the way for a new generation of semiconductor lasers

Lasers became popular with movies like „Star Wars“ or „James Bond“. In reality, lasers are incredibly versatile applicable tools. Physicists of the University of Stuttgart succeeded with a technological breakthrough which will extend the choice of by semiconductor lasers accessible wavelengths. This in turn will facilitate new applications.


diamond-semiconductor-sandwich in the laboratory setup

Photo: University of Stuttgart/ Hermann Kahle

Today, depending on their power, beam quality and wavelength, lasers are used, e.g., for cutting and welding of a variety of materials or as a sensor that scans the data stored on DVDs or Blu-Ray Disks.

Due to their compactness semiconductor lasers are particularly suited to be integrated in complex devices. However, semiconductor laser diodes have several drawbacks compared to other laser systems like gas lasers or solid-state lasers:

The output power of such laser systems cannot be reached and the intensity distribution of the emitted beam strongly deviates from the optimum Gaussian beam which describes the best possible focusing capability. This focusing capability by the way is the crucial parameter to efficiently couple a laser beam into an optical fiber.

The invention of the solid-state-thin disk laser, also from scientists of the University of Stuttgart some years ago, fructifies also the area of semiconductor-based lasers. The disk laser concept improves the heat dissipation from the laser medium drastically preventing an early overheating or even its destruction. The operational limits of such systems are shifted by this to much higher powers.


By realizing semiconductor lasers as disk lasers these devices are in no way inferior in terms of beam quality compared to conventional systems like yttrium-aluminum-garnet-lasers or helium-neon-lasers. This for example is essential in the modern medical technology for minimum invasive surgeries with optical fibers.

How can semiconductor disk lasers further be improved in terms of output power without losing their other wonderful properties? Scientists from the “Institut für Halbleiteroptik und Funktionelle Grenzflächen” around Prof. Dr. Peter Michler and from the “Institut für Strahlwerkzeuge” around Prof. Dr. Thomas Graf and Dr. Uwe Brauch examined this issue.

The key solution sounds simple and is consequent though challenging as it is in most cases when going into practice. Semiconductors themselves are poor thermal conductors. So one has just to omit all parts of the semiconductor structure not essentially necessary to build up a whole laser: the substrate on which the semiconductor layers are deposited has no function during laser operation and can be removed. External mirrors can replace the semiconductor mirror, integrated in all semiconductor disk lasers.

The only thing left of the semiconductor component is the several few hundreds of nanometers thick laser active region which gets sandwiched between two diamond disks. Diamond – transparent and the best thermal conductor available – is suitable in an outstanding way as an integrated heat spreader. The PhD-Students Hermann Kahle and Cherry May Mateo started with wet-chemical etching processes to isolate the laser active region from its substrate. The semiconductor membrane, in total thickness only one eightieth of the diameter of a regular human hair, can be stored and best handled when submerged in a liquid only.

The exciting thing at the end was to transfer the membrane onto a diamond disk which is four millimeter in diameter and 0.5 millimeter in thickness. Likewise, it has to keep in one piece, centered to the diamond and totally flat. And, there was never a second chance. Once bonded to the diamond by capillary forces it was impossible to remove the membrane again without destroying it. Laboratory work like this requires calm hands, lots of skill and endurance.

“We had to start again and again very often but in the end the efforts paid off.” The completed diamond-semiconductor-sandwich was then inserted into a laser resonator and characterized in the optics laboratory. After hours of adjustment work it flashed and the membrane laser was operating. A strong light beam in the red spectral range was emitted after a little more fine adjustment. And, it showed all characteristics we had hoped for: the tunability of the laser wavelength during operation, a perfectly shaped beam profile and especially a for semiconductor lasers high output power; and all this at an operating temperature of 10°C. Without the diamond sandwich the semiconductor membrane would rapidly overheat and stop to operate. Before this approach the whole semiconductor disk laser device sometimes had to be cooled down to minus 30°C.

An important intermediate target has been successfully accomplished; detailed work starts now. The data gained until now attest the scientists that they have developed an attractive novel laser system carrying further benefits. Omitting the integrated semiconductor mirror a performance hampering heat barrier disappeared. Furthermore, this extends the accessible emission wavelengths as material intrinsic absorption effects of the semiconductor mirror also disappear. The formerly integrated semiconductor mirror builds up the laser resonator together with an external mirror. This resonator is essential for laser operation. Now the integrated mirror is replaced by an additional external mirror to complete the laser resonator.

In future we will be able to realize further lasers with this technology which up to now have been impossible to realize as compact semiconductor based lasers operating in colors like yellow or orange. Even physicians can be looking forward to this. In the medium term new fiber coupled lasers for the photodynamic therapy could be available, operating at room temperature. Additionally, these lasers are tunable in emission wavelength and can be adjusted to the wavelength necessary for the used light sensitive drug due to the beneficial characteristics of semiconductors.

“We are asked occasionally if the light saber from Star Wars will be available soon.” Science-fiction fans need not to worry: “We’re working on that.”

Ansprechpartner:

Referenzen:
Semiconductor membrane external-cavity surface-emitting laser (MECSEL)
Hermann Kahle, Cherry May N. Mateo, Uwe Brauch, Philipp Tatar-Mathes, Roman Bek, Michael Jetter, Thomas Graf, and Peter Michler,
Optica 3, 1506-1512 (2016).
URL: https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-3-12-1506&id=35...

LaserFocusWorld®:
URL: http://www.laserfocusworld.com/articles/print/volume-53/issue-01/features/photon...

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-stuttgart.de/en/university/news/press-release/Neuartige_Halbleiter-Membran-Laser/

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>