Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel light sources made of 2D materials

28.10.2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been surrounded by a virtual hype in the past ten years. This is because they show great promise to revolutionise many areas of physics.


Artistic representation of a two-photon source: The monolayer (below) emits exactly two photons of different frequencies under suitable conditions. They are depicted in red and green.

Picture: Karol Winkler

In physics, the term monolayer refers to solid materials of minimum thickness. Occasionally, it is only a single layer of atoms thick; in crystals it can be three or more layers. Experts also speak of two-dimensional materials. In this form, they frequently exhibit unexpected properties that make them interesting for research. The so-called transition metal dichalcogenides (TMDC) are particularly promising. They behave like semiconductors and can be used to manufacture ultra-small and energy-efficient chips, for example.

Moreover, TMDCs are capable of generating light when supplied with energy. Dr. Christian Schneider, Professor Sven Höfling and their research team from the Chair of Technical Physics of the Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, have harnessed exactly this effect for their experiments.

Experiments started with sticky tape

First, a monolayer was produced using a simple method. This usually involves a piece of sticky tape to peel a multi-layer film from a TMDC crystal in a first step. Using the same procedure, thinner and thinner layers can be stripped from this film. This process is repeated until the material on the tape is only one layer thick.

The researchers then cooled this monolayer down to a temperature of just above absolute zero and excited it with a laser. This causes the monolayer to emit single protons under specific conditions. "We were now able to show that a specific type of excitement produces not one but exactly two photons," Schneider explains. "The light particles are generated in pairs so to speak."

Such two-photon sources are interesting for the following reason: They can be used to transfer information 100% tap-proof. For this purpose, the light particles are entangled with each other – a quantum mechanical process in which their state is interwoven. The state of the first photon then has a direct impact on that of the second photon, regardless of the distance between the two. This fact can be used to encrypt communication channels.

Monolayers enable novel lasers

In a second study, the JMU scientists demonstrated another application option of the exotic monolayers. For this purpose, they mounted a monolayer between two mirrors and again stimulated it with a laser. The radiation excited the TMDC plate to a level that it began to emit photons itself. These were reflected back to the plate by the mirrors where they excited atoms themselves to create new photons.

"We call this process strong coupling," Schneider explains. The light particles are cloned during this process in a manner of speaking. "Light and matter hybridise, forming new quasi particles in the process: the exciton polaritons," the physicist says. For the first time, it has now been possible to detect these polaritons at room temperature in atomic monolayers.

In the medium run, this will open up interesting new applications. The "cloned" photons have similar properties to laser light. But they are manufactured in completely different ways: Ideally, the production of new light particles is self-sustaining after the initial excitation without requiring any additional energy supply. In a laser in contrast, the light-producing material has to be excited energetically from the outside on a permanent basis. This makes the new light source highly energy-efficient. Moreover, it is excellently suited to study certain quantum effects.

Schneider's ERC project bears fruit

In spring 2016, Christian Schneider received one of the coveted ERC Starting Grants of the European Research Council. The European Union thus funds his work on transition metal dichalcogenides with 1.5 million euros in total. The two studies published in the prestigious science journal "Nature Communication" are the first results of the ERC project.

The publications in Nature Communications

Yu-Ming He, Oliver Iff, Nils Lundt, Vasilij Baumann, Marcelo Davanco, Kartik Srinivasan, Sven Höfling and Christian Schneider: Cascaded emission of single photons from the biexciton in monolayered WSe2; Nature Communications; DOI: 10.1038/ncomms13409

Nils Lundt, Sebastian Klembt, Evgeniia Cherotchenko, Oliver Iff, Anton V. Nalitov, Martin Klaas, Simon Betzold, Christof P. Dietrich, Alexey V. Kavokin, Sven Höfling and Christian Schneider: Room temperature Tamm-Plasmon Exciton-Polaritons with a WSe2 monolayer; Nature Communications; DOI: 10.1038/ncomms13328

Contact

Dr. Christian Schneider, Chair of Technical Physics, JMU, Phone +49 931 31-88021, christian.schneider@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>