Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST therapy for ultraviolet laser beams: Hydrogen-treated fibers

12.08.2014

To make a better optical fiber for transmitting laser beams, the first idea that comes to mind is probably not a nice long hydrogen bath.

And yet, scientists have known for years that hydrogen can alter the performance of optical fibers, which are often used to transmit or even generate laser light in optical devices. Researchers at the National Institute of Standards and Technology (NIST) have put this hydrogen "cure" to practical use, making optical fibers that transmit stable, high-power ultraviolet laser light for hundreds of hours.


This is a micrograph of an optical fiber that has been infused with hydrogen and cured with ultraviolet light (here shown transmitting violet laser light.) Fibers treated this way can transmit stable, high-power ultraviolet laser light for long periods of time, resisting the damage usually caused by UV light. The diameter of the pattern of air holes surrounding the core is 62.5 micrometers.

Credit: Slichter/NIST

NIST scientists expect these hydrogen-treated fibers, described in Optics Express,* to reduce errors in logic operations in their quantum computing experiments.

Optical fibers generally are not able to transmit ultraviolet light because the short wavelength light can interact with dopants or impurities in the fibers, resulting in so-called "solarization" damage and extreme losses of beam intensity. The fibers effectively shut down. Hydrogen molecules have been shown to heal this damage as it occurs.

... more about:
»Hydrogen »NIST »damage »experiments »fiber »fibers »therapy »wavelength

NIST researchers tested two types of fibers with solid cores made of fused silica surrounded by lattices of air holes, which form a crystal structure that maintains the shape of transmitted laser beams. The fibers were infused with hydrogen gas at 100 times standard atmospheric pressure for four to six days.

Conveniently, some of the fibers could be treated in NIST's hydrogen pipeline materials testing facility.** After the hydrogen diffused into the fiber cores, the fibers were cured by exposure to ultraviolet laser light for several days.

NIST researchers then tested the fibers by transmitting ultraviolet laser light through them. The fibers did not display any solarization damage, even at output powers as high as 125 milliwatts (mW) at 313 nanometer (nm) laser wavelengths—several times the beam intensity needed for the group's quantum computing experiments. The combination of hydrogen infusion and curing with ultraviolet light "appears to confer long-term resistance" to this type of damage, according to the paper. The fibers also lose very little of the laser light as it is transmitted.

For comparison, NIST researchers also tested fibers that were not treated with hydrogen. With 313 nm wavelength laser light at 100 mW power, light transmission through the fibers dropped to zero in four hours, confirming the value of the hydrogen treatment.

The treated fibers could be used to transmit a wide range of infrared, visible and ultraviolet wavelengths of light, according to the research team. When used at NIST to transmit laser light to trap ions (electrically charged atoms), the fibers reduce stray light and fluctuations in laser beam pointing and make it possible to transfer ultraviolet light between separate optical tables, the paper notes. The fibers also can help "clean up" misshapen beams, the researchers say.

The same NIST research group has achieved many "firsts" using trapped ions to demonstrate building blocks for quantum computers, which would use the exotic properties of the quantum world to solve problems considered intractable today.

###

* Y. Colombe, D.H. Slichter, A.C. Wilson, D.G. Leibfried and D.J. Wineland. Single-mode optical fiber for high-power, low-loss UV transmission. Optics Express, Vol. 22, Issue 16, pp. 19783-19793. Published online Aug. 8, 2014. DOI:10.1364/OE.22.019783.

** See 2010 NIST Tech Beat article, "Future of Hydrogen Fuel Flows Through New NIST Test Facility," at http://www.nist.gov/public_affairs/tech-beat/tb20100216.cfm#hydrogen.

Laura Ost | Eurek Alert!
Further information:
http://www.nist.gov

Further reports about: Hydrogen NIST damage experiments fiber fibers therapy wavelength

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>