Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of smart windows use liquid to switch from clear to reflective

14.12.2017

Easy-to-manufacture switchable windows could improve energy efficiency in buildings and help keep cars cool

Researchers have demonstrated prototype windows that switch from reflective to clear with the simple addition of a liquid. The new switchable windows are easy to manufacture and could one day keep parked cars cool in the sun or make office buildings more energy efficient. The technology can also be used to make roof panels that keep houses cool in the summer and warm in the winter.


A new type of smart window uses liquid to switch from reflective to clear. The new technology is inexpensive to make and could help make buildings and homes more energy efficient. (Video)

Credit: Keith Goossen, University of Delaware

Although glass that uses an applied voltage to switch from clear to an opaque or tinted state is commercially available, its high cost-- around $100 per square foot -- has hindered widespread use.

"We expect our smart glass to cost one tenth of what current smart glass costs because our version can be manufactured with the same methods used to make many plastic parts and does not require complicated electro-optic technology for switching," said Keith Goossen, who led the research team with Daniel Wolfe of the University of Delaware.

The new smart windows contain a plastic panel with a pattern of structures that is retroreflective. This means that rather than reflecting light in all directions like a mirror, it reflects light back in the direction it came from like a bicycle reflector.

In The Optical Society (OSA) journal Optics Express, the researchers demonstrate a prototype of the new smart glass consisting of a 3D printed plastic panel covered by a thin chamber. When the chamber is filled with the fluid methyl salicylate -- which matches the optical properties of the plastic -- the retroreflective structures become transparent.

"Although we had to develop new ways to process 3D printable plastics with good optical performance, develop inexpensive refractive index-matching fluids and come up with highly reflective optical structures, the innovation here is mostly in recognizing that such a simple concept could work," said Goossen.

Keeping cars cool

One of the most promising applications for the new switchable glass may be in cars, where it could be used to change the windshield to a reflective state when the car is parked in the hot sun.

"You can't use today's commercially available switchable glass for this application because in the darkened state the windshield still absorbs sunlight and becomes hot," said Goossen. "Because our glass is retroreflective in the non-transparent state, almost all the light is reflected, keeping the glass, and thus the car, from getting hot."

The fact that the glass is retroreflective means that if it were used on the outside of skyscraper, for example, it would direct light up toward the sun rather than down to the street. This reduces the building's contribution to city warming, which is a problem in many urban areas.

The researchers have also shown that the plastic retroreflective panels can be used as an inexpensive switchable roofing structure that cuts down on heating and cooling costs. In places that are warm and sunny year-round, white roofing materials have been shown to lower cooling costs by reflecting sunlight. However, in areas with cold winters, these white roofs prohibitively add to heating costs in the winter.

"Here in Delaware, you would like to have a white roof in the summer to keep the house cool and a dark roof in the winter to absorb sunlight and help lower heating costs," said Goossen. "For smart roofing, our new technology offers a more effective type of cool roof because it is retroreflective while also allowing the roof to switch to dark in the winter."

For roofing applications, a layer of material placed under the panels is used to absorb light when the panels are in their clear state. This helps keep the house warmer when outside temperatures are cold. Although the methyl salicylate used in the prototype could freeze in very cold climates (less than 16 degrees Fahrenheit), freeze-resistant fluids could be developed.

3D printing the prototype

To make the new switchable glass, the researchers started by using 3D printing to make plastic panels with repeating retroreflective structures of various sizes for testing. They used a commercially available clear 3D printable material and developed post-processing steps to ensure the plastic remained highly transparent after printing and exhibited very accurate corners, which were important to achieve retroreflection.

"Without 3D printing, we would have had to use a molding technology, which requires building a different mold for every different structure," said Goossen. "With 3D printing, we could easily make whatever structure we wanted and then run experiments to see how it performed. For commercial production, we can use standard injection molding to inexpensively make the retroreflective panels."

Once the researchers figured out the optimal size to use for the repeating structures, they performed optical testing to determine whether characteristics such as surface roughness or the material's light absorption would cause unexpected optical problems. These optical tests showed that the structures worked exactly as indicated by optical simulations.

"Importantly, we also demonstrated that the device can undergo thousands of cycles from transparent to reflective without any degradation," said Goossen. They did, however, find that some fluid stays on the structure instead of draining off. To solve this issue, the researchers are developing coatings that will help the fluid drain off the plastic without leaving any residue.

"To further demonstrate the technology's usefulness as switchable glass, we are building an office door that incorporates the new smart glass as a switchable privacy panel," said Goossen. "These types of panels are currently made with much more expensive technology. We hope that our approach can broaden this and other applications of smart glass."

###

Paper: D. Wolfe, K. W. Goossen, "An Evaluation of 3D Printed Optofluidic Smart Glass Prototypes," Opt. Express, Volume 26, Issue 2, A85-A98 (2018).

DOI: 10.1364/OE.26.000A85.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society and edited by Andrew M. Weiner of Purdue University. Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

http://www.osa.org 

Joshua Miller | EurekAlert!

Further reports about: 3D fluids glass heating methyl salicylate plastic smart windows

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>