Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of low-energy nanolaser that shines in all directions

18.12.2018

Researchers in Eindhoven have developed a new type of low-energy, nanoscale laser that shines in all directions. The key to its omnidirectional light emission is the introduction of something that is usually highly undesirable in nanotechnology: irregularities in the materials. The researchers foresee a vast range of potential applications, but first they hope their fundamental work will inspire others to further improve it and deepen the understanding. The results are published in the journal Physical Review Letters.

Lack of control of the variables determining the response of a system is usually seen as a curse in science and technology. But what about a slight pinch of imperfection and disorder?


The left panel correspond to a 'good' nanolaser, while the right panel to a disordered nanolaser. The upper images are photographs of the nanolasers made with an electron microscope. The light grey areas correspond to silver nanoparticles acting as the nano-mirrors of the laser. The lower panels correspond to the light emission from the nanolasers as a function of the emitted angle and wavelength (color of the emission). For the good laser (bottom left), the light is emitted in one direction and has one color. For the disordered nanolaser, the emission has also one color, but it is now omnidirectional.

Credit: Eindhoven University of Technology


It contains ten patches that each have their own silver nanoparticle pattern. The colors on the sample are not the laser light (the laser is not on) but reflections, similar to the colors that can be seen on the surface of a compact disk.

Credit: Alexei Halpin, Eindhoven University of Technology.

Imperfections and irregularities are unavoidable in nanoscience due to our limited level of control of nanofabrication processes. Disorder is potentially detrimental to nanosystems, but if well-contained, disorder might not be an intruder after all, leading to novel physical concepts and applications.

Published in the prestigious journal Physical Review Letters, scientists from Eindhoven University of Technology (TU/e) and the Dutch Institute for Fundamental Energy Research (DIFFER) have investigated the role of imperfections and disorder in nanolasers.

By introducing a slight degree of disorder, they have observed a dramatic change: the laser no longer emits in one specific direction, but in all directions.

Development of nanoscale lasers (smaller than the thickness of a human hair) is a very active field of research. In a normal laser, each photon (light particle) is 'cloned' many times in a medium that is located inside a cavity (e.g. a pair of mirrors between which the photon moves back and forth producing other photons with the same characteristics).

This process is known as Light Amplification by Stimulated Emission of Radiation (LASER). To achieve laser emission an electrical current is usually injected through the medium, or it is illuminated with high energy light. The minimum energy needed for a laser to emit is called the lasing threshold.

A different kind of laser is the so-called polariton laser. This works on the principle not of cloning photons but making non-identical photons identical in much the same way as water vapor molecules, moving in all directions with different velocities, are condensed into a single drop.

Condensation of photons gives rise to the intense and directional emission characteristic of a laser. An important advantage of polariton lasers is that they have a much lower lasing threshold, which makes them excellent candidates for many applications.

However, a major problem of polariton lasers has been that they need to operate at very low temperatures (like vapor condensation that takes place only when the temperature is lowered) but by using organic materials, it is possible to obtain polariton laser emission even at ambient temperature.

The Eindhoven researchers demonstrated last year that they can realize nanoscale polariton lasers that function at ambient temperature, using metallic nanoparticles instead of mirrors as in normal lasers.

The TU/e-DIFFER researchers have now discovered a new kind of polariton laser that consists of a regular pattern of silver nanostripes covered with colored PMMA-polymer whose dye comprises organic emitting molecules. However, the silver stripes deliberately have some degree of imperfection and disorder. The emission from this non-perfect nanolaser is omnidirectional and mainly is determined by the properties of the organic molecules.

This result is not expected in the framework of condensation, as omnidirectional emission requires emissions from independent organic molecules instead of the collective emission that is typical for condensation. The demonstration of omnidirectional emission defines new boundaries for the development of nanoscale lasers at ambient temperatures.

The researchers think their laser may eventually be applied in many areas. Compared to a LED, the omnidirectional laser light is much brighter and better defined. That's why it is a good candidate for microscopy lighting, which currently uses LEDs. LIDAR (Laser Imaging Detection And Ranging) is another potential application. Current LIDAR use one or more lasers and a set of fast moving mirrors in order to cover large areas to image distant objects.

An omnidirectional laser does not require the moving mirrors, thereby significantly reducing the complexity. And also general illumination is an option, says lead researcher professor Jaime Gomez Rivas. "But the research is still very fundamental. We hope that our results will stimulate other researchers to improve them by further reducing the lasing threshold or increasing the range of emitted colors."

Surface Photonics Group

The research group responsible for this work investigates light-matter interaction enhanced by resonant structures, such as metallic nanoparticles and structured surfaces. Strong light-matter coupling leads to new fundamental phenomena that can be exploited to tailor material properties. The group is part of the Photonics and Semiconductor Nanophysics capacity group at the department of Applied Physics and of the "Institute for Integrated Photonics" of Eindhoven University of Technology (TU/e), and formerly part of the Dutch Institute for Fundamental Energy Research (DIFFER), where the experimental work in this paper was performed.

Media Contact

Jaime Gómez Rivas
j.gomez.rivas@tue.nl
31-402-472-669

 @TUEindhoven

http://www.tue.nl/en 

Jaime Gómez Rivas | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.121.243904

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>