Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'styrofoam' planet provides tools in search for habitable planets

16.05.2017

Highly inflated gas giant orbits bright southern star

Fifth-graders making styrofoam solar system models may have the right idea. Researchers at Lehigh University have discovered a new planet orbiting a star 320 light years from Earth that has the density of styrofoam. This "puffy planet" outside our solar system may hold opportunities for testing atmospheres that will be useful when assessing future planets for signs of life.


This is an artist's rendering of KELT-11b, a 'styrofoam'-density exoplanet orbiting a bright star in the southern hemisphere.

Image by Walter Robinson/Lehigh University


The KELT-South robotic telescope in South Africa that made the discovery of KELT-11b.

Photo courtesy of Joshua Pepper

"It is highly inflated, so that while it's only a fifth as massive as Jupiter, it is nearly 40 percent larger, making it about as dense as styrofoam, with an extraordinarily large atmosphere," said Joshua Pepper, astronomer and assistant professor of physics at Lehigh University, who led the study in collaboration with researchers from Vanderbilt University and Ohio State University, along with researchers at universities and observatories and amateur astronomers around the world.

The research, "KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V+8 Subgiant HD 93396," is published online in The Astronomical Journal.

The planet's host star is extremely bright, allowing precise measurement of the planet's atmosphere properties and making it "an excellent testbed for measuring the atmospheres of other planets," Pepper said. Such observations help astronomers develop tools to see the types of gases in atmospheres, which will be necessary in the next 10 years when they apply similar techniques to Earthlike exoplanets with next-generation telescopes now under construction.

The planet, called KELT-11b, is an extreme version of a gas planet, like Jupiter or Saturn, but is orbiting very close to its host star in an orbit that lasts less than five days. The star, KELT-11, has started using up its nuclear fuel and is evolving into a red giant, so the planet will be engulfed by its star and not survive the next hundred million years.

The KELT (Kilodegree Extremely Little Telescope) survey uses two small robotic telescopes, one in Arizona and the other in South Africa. The telescopes scan the sky night after night, measuring the brightness of about five million stars. Researchers search for stars that seem to dim slightly at regular intervals, which can indicate a planet is orbiting that star and eclipsing it. Researchers then use other telescopes to measure the gravitational "wobble" of the star - the slight tug a planet exerts on the star as it orbits - to verify that the dimming, called a "transit," is due to a planet and to measure the planet's mass.

Scientists and Citizens Search Sky

Pepper built the two telescopes used in the KELT survey, which he runs with researchers at Vanderbilt University, Ohio State University, Fisk University and the South African Astronomical Observatory. Among the more than 30 contributors to the research are partners at NASA, Harvard University, University of Pennsylvania, Princeton University and University of California at Berkeley. Lehigh University physics graduate student Jonathan Labadie-Bartz is a member of the KELT team and a co-author on the paper. Some 40 "citizen scientists" in 10 countries across four continents have also contributed to the KELT project and several contributed directly to the discovery of KELT-11b and are co-authors on the paper.

While several projects using small robotic telescopes have found hundreds of planets orbiting other stars - and space telescopes like the NASA Kepler mission have discovered thousands - most of those planets orbit faint stars, making it difficult to measure the planets' properties precisely.

"The KELT project is specifically designed to discover a few scientifically valuable planets orbiting very bright stars, and KELT-11b is a prime example of that," Pepper said. The star, KELT-11, is the brightest in the southern hemisphere known to host a transiting planet by more than a magnitude and the sixth brightest transit host discovered to date. Planets discovered by the KELT survey will be observed in detail by large space telescopes such as Hubble and Spitzer and the James Webb Space Telescope, scheduled to launch in 2018, to understand how planets form and evolve and how their atmospheres behave, Pepper said.

The KELT researchers set out to discover gas giant planets orbiting bright stars, but did not expect to find planets with such low mass and large sizes. Located in the southern sky, the "extraordinarily inflated" KELT-11b is the third-lowest density planet with a precisely measured mass and radius that has been discovered. "We were very surprised by the amazingly low density of this planet," Pepper said. "It's extremely big for its mass. It's got a fifth of the mass of Jupiter but is puffed up into this really underdense planet."

Though researchers are debating the cause of KELT-11b's inflation, further study of the planet could provide additional information about the mechanism that causes inflated planets, Pepper said. The planet's large atmosphere also provides good opportunities for developing techniques needed to identify chemicals in planets' atmospheres to assess habitability or products of life in the atmospheres of other planets.

"We don't know of any real Earthlike planets or stars for which we can measure their atmospheres, though we expect to discover more in future years," Pepper said. "These (giant gas) planets are the gold standards or testbeds for learning how to measure the atmospheres of planets."

The research was supported by the National Science Foundation, NASA and a variety of universities and foundations.

Media Contact

Amy White
abw210@lehigh.edu
610-758-6656

 @lehighu

http://www.lehigh.edu

Amy White | EurekAlert!

Further reports about: Atmosphere Jupiter NASA Telescopes Vanderbilt solar system space telescopes

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>