Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Favors Quantum Mind

22.09.2014

Quantum coherence in brain protein resembles plant photosynthesis

Are the mysteries of quantum physics and consciousness related?


Top: A microtubule, polymer of ‘tubulin’ proteins inside neurons. Bottom: Tubulin with 8 tryptophan chromophores (blue). Red lines and numbers between tryptophans indicate dipole coupling strengths in cm-1

(image courtesy of: Travis J.A. Craddock)

A fierce debate has raged for decades over whether quantum coherence can occur in the brain to support the conscious mind. In the mid 1990s British physicist Sir Roger Penrose and American anesthesiologist Stuart Hameroff proposed that consciousness depends on quantum computations in microtubules inside brain neurons.

The proposal has been viewed skeptically, and harshly over the years, as technological quantum computers require isolation and extreme cold to avoid ‘decoherence’ by thermal vibrations. The conventional wisdom has considered the brain far too “warm, wet and noisy” for seemingly delicate quantum functions.

But nature is resourceful. Photosynthesis, the ubiquitous and essential mechanism by which plants produce food from sunlight, has been shown since 2006 to routinely utilize quantum coherence at warm temperatures. Photons from the sun are absorbed within plant cells, the collected energy then transported through a protein to another region for chemical energy and food.

It turns out that the collected photon energy is first converted to electronic excitations in distinct intra-protein ‘chromophores’, each an array of ‘pi’ electron resonance clouds, and then transported as electronic excitations (‘excitons’), dipole couplings or ‘resonance energy transfers’ which ‘hop’, or spread through the protein, not just from one chromophore to another, but among all chromophores at the same time in quantum coherent superposition! Heat in the form of thermal vibrations pumps, rather than disrupts, quantum coherence, the end result being highly efficient conversion of sunlight to food, extremely important to life on earth.

Back in the brain, microtubules are components of the cytoskeleton inside neurons, cylindrical lattice polymers of the protein ‘tubulin’. Microtubules are theorized to encode memory, regulate synapses and act as quantum computers generating consciousness. The latter claim has been criticized, but now it appears quantum mechanisms eerily similar to those in photosynthesis may operate in tubulins within microtubules.

In an article published September 17 by the Journal of the Royal Society – Interface a team of scientists from Nova Southeastern University and the University of Arizona in the US, and the University of Alberta in Canada used computer simulation and theoretical quantum biophysics to analyze quantum coherence among tryptophan pi resonance rings in tubulin, the component protein in microtubules.

Professor Travis Craddock of Nova Southeastern University and colleagues mapped locations of the tryptophan pi electron resonance clouds in tubulin, and found them analogous to chromophores in photosynthesis proteins.

Eight tryptophans per tubulin are spatially arrayed nanometers apart, geometrically similar to the 7 chromophores in photosynthetic proteins. Calculations showed plausible quantum dipole coupling among tryptophan pi resonance clouds, mediated by exciton hopping or Forster resonance energy transfer (FRET) across the tubulin protein. Quantum coherence was enhanced by mechanical vibrational resonance, also similar to photosynthesis proteins.

Craddock’s team also found that resonance transfer between tryptophans in adjacent tubulins is plausible, e.g. along the microtubule length. This implies the likelihood of quantum coherent states extending through mesoscopic and macroscopic lengths in microtubules.

Along with recent evidence for coherent megahertz vibrations in microtubules, and that anesthetics act to erase consciousness via microtubules, quantum brain biology will become increasingly important.

Professor Jack Tuszynski of the University of Alberta, senior author on the study, “If a potato or rutabaga can utilize quantum coherence, it's likely our brains could have figured it out as well.”

Journal Reference

Travis John Adrian Craddock, Douglas Friesen, Jonathan Mane, Stuart Hameroff, and Jack A. Tuszynski. The feasibility of coherent energy transfer in microtubules. J. R. Soc. Interface, 2014; 11(100): 20140677; DOI:10.1098/rsif.2014.0677 1742-5662

Travis John Adrian Craddock | newswise

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>