Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New solar technology for the energy transition

28.06.2018

German-French research initiative: physicists from the University of Jena and partners are developing and testing innovative materials for possible use as high-efficiency solar cells. Their research project, ‘Quest for Energy’, is being funded until 2022 with around one million euros from the German Academic Exchange Service.

It is crucial that we prevent the Earth from warming by more than two degrees Celsius compared with the pre-industrial era. This is a key aim of the 2015 Paris Climate Agreement. To achieve this goal, greenhouse gas emissions have to be drastically reduced. And for this to happen, we need a global energy revolution, with fossil fuels such as oil, gas and coal being largely replaced by renewable energy sources.


Dr Michael Zürch from the Institute of Optics and Quantum Electronics at the University of Jena investigates semiconductor materials to replace silicon in solar modules.

Photo: Jan-Peter Kasper/FSU

So far, so obvious. However, it is well known that difficulties are being experienced in reaching these climate goals, and Dr Michael Zürch is certain that this is not just due a lack of political will. “It would definitely be possible to accelerate the energy transition if, for example, we had better solar technology,” says Zürch, a physicist who obtained his PhD at Friedrich Schiller University in Jena and has been doing research at the renowned University of California at Berkeley since 2015.

He points out that the silicon-based solar modules currently in use have an efficiency of at most 20 per cent. In other words: with current modules, more than three-quarters of the solar energy cannot be used. “We need alternatives to silicon that enable a more efficient conversion of solar energy into electricity,” adds Zürch.

Over the next four years, Zürch will be focusing intensively on these alternatives. With colleagues at the Chair of Quantum Electronics of the University of Jena, as well as French and US partners, he is launching his ‘Quest for Energy’ research project. The German Academic Exchange Service is funding the project until 2022 with around one million euros, as part of the German-French research initiative ‘Make our planet great again’.

Two-dimensional semiconductor materials to replace silicon

A promising class of materials that could supersede silicon in solar modules is that of semiconductor nanomaterials, as Prof Christian Spielmann explains. “These two-dimensional layers, which are just a few atoms thick, possess quite extraordinary optical and electronic properties, which make them ideally suited as semiconductors,” adds Spielmann, in whose team Zürch’s project is now based. The best-known example of such 2D nanomaterials is graphene. However, the physicists in Jena want to explore a new class of these materials that has hardly been studied to date: transition metal dichalcogenides.

“These are composite materials, the properties of which vary depending on their composition and which could therefore be tailored for use in a variety of applications,” Zürch explains. However, little is known so far about the fundamental processes in these materials when they interact with light. Due to their special nano-properties, the physical processes in these materials are especially fast. The physicists now want to investigate these properties in detail, to assess their suitability as a solar material.

“Our specific aim is to observe the charge carriers – i.e. the electrons – in the material when they are illuminated with light.” This will be done with the help of a high-performance ultrashort pulse laser, which records the extremely rapid movements of the electrons in snapshots lasting only a few hundred attoseconds. An attosecond is one quintillionth of a second – the brief moment it takes for light particles to travel the length of a water molecule.

The work of the Jena physicists will initially be “purely basic research”, notes Zürch. “However, in the long term this might enable us to smooth the way towards a targeted application of such composite materials in solar technology and actually move the energy transition forward.”

Contact:
Dr Michael Zürch
Institute of Optics and Quantum Electronics of Friedrich Schiller University, Jena
Max-Wien-Platz 1, 07743 Jena, Germany
Tel.: +49 (0)3641 / 947213
E-mail: michael.zuerch[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>