Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New quantum phenomena in graphene superlattices

19.09.2017

A team of Graphene Flagship researchers led by the University of Manchester reported in the journal Science showing the first new type of quantum oscillation to be reported for thirty years. This occurs by applying a magnetic field and it is the first of its kind to be present at high temperature and on the mesoscale. This research also sheds light on the Hofstadter butterfly phenomenon.

Quantum theory is the study of physics at the atomic and sub atomic level. It quantises energy and momentum and shows how objects are characterised as both particles and waves. Quantum oscillations can be used to map the properties of new materials in the presence of a magnetic field.


This is an example of the Hofstadter butterfly phenomenon.

Credit: The University of Manchester

This paper shows how it is possible to tune the magnetic field applied to a heterostructure comprising of graphene and boron nitride to create a whole host of different electronic materials.

The superlattice, created in graphene by its exact placement with regards to a periodically arranged boron nitride layer, interacts with the magnetic field in such a way that it is possible to tune its oscillation to manufacture bands and gaps in its electronics structure - meaning that the magnetic field can be used to tune the materials to be metallic, semiconducting or conducting.

Andre Geim, a leading member of the team and the 2010 Nobel Laureate, says "Oscillatory quantum effects always present milestones in our understanding of materials properties. They are exceedingly rare. It is more than 30 years since a new type of quantum oscillation was reported." He added "Our oscillations stand out by their extreme robustness, happening under ambient conditions in easily accessible magnetic fields."

This work also sheds further light on Hofstadter's butterfly, a fractal pattern that describes the behaviour of electrons in a magnetic field, measured experimentally for the first time in 2013 using a graphene and boron-nitride heterostructure. In the original theoretical work on which Hofstadter's butterfly is based the electrons modelled to create the fractal pattern were treated as Bloch electrons (electrons that do not interact with one another and move within a periodic electric potential within a lattice). The research shown here illustrates how these complex fractal patterns can be viewed as Langmuir quantisation which is the quantisation of cyclotron orbits (taking what is normally thought of as a circular orbit and instead viewing it as linear)

Professor Vladimir Falko, Director of the National Graphene Institute commented "Our work helps to demystify the Hofstadter butterfly. The complex fractal structure of the Hofstadter butterfly spectrum can be understood as simple Landau quantisation in the sequence of new metals created by magnetic field."

Professor Bart van Wees, Head of the Physics of Nanodevices group at the Zernike Institute for Advanced Materials, Groningen, The Netherlands added "We have always considered quantum oscillations as very brittle, easily destroyed at higher temperatures but the authors have shown that these can now be observed at room temperature, or even higher. This is good news for possible new applications of these and other systems which are based on Van der Waals stacking of two-dimensional materials."

Media Contact

Sian Fogden
comms@graphene.cam.ac.uk
44-012-237-62418

 @GrapheneCA

http://graphene-flagship.eu 

Sian Fogden | EurekAlert!
Further information:
https://graphene-flagship.eu/new-quantum-phenomena-in-graphene-superlattices

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>