Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method gives microscope a boost in resolution

10.12.2018

Mirrored slides now allow significantly sharper images / 20x better resolution than an ordinary light microscope - Scientists at the University of Würzburg have been able to boost current super-resolution microscopy by a novel tweak. They coated the glass cover slip as part of the sample carrier with tailor-made biocompatible nanosheets that create a "mirror effect". This method shows that localizing single emitters in front of a metal-dielectric coating leads to higher precision, brightness and contrast in Single Molecule Localization Microscopy (SMLM). The study was published in the Nature journal "Light: Science and Applications".

The sharpness of a light microscope is limited by physical conditions: structures that are closer together than 0.2 thousandths of a millimeter blur into each other - they can no longer be distinguished from each other.


Conventional (left) and mirror-enhanced dSTORM (right) images of a single NPC rings.

Julius-Maximilians-Universität Würzburg


Schematic drawing of a nuclear pore complex labeled with red fluorescent dyes, engulfed by the nuclear membrane and placed on a mirror coating

Julius-Maximilians-Universität Würzburg

The cause of this blurring is diffraction: In simple terms, it prevents that light rays can not be bundled with arbitrary precision. Each point-shaped object is therefore not shown as a point, but as a "blurry spot".

With mathematical methods, the resolution can still be drastically improved. One would calculate its exact center from the brightness distribution of the "blurry spot".

However, it only works if two closely adjacent points of the object are initially not simultaneously but subsequently visible, and are merged later in the image processing. This temporal decoupling prevents superimposition of the "blurry spot".

Researchers in life sciences have been using this tricky method for some years, for super high-resolution light microscopy of cells.

One type of this method was developed in the research group of Prof. Dr. Markus Sauer at the University of Würzburg: direct stochastic optical reconstruction microscopy (dSTORM). This powerful SMLM technique can provide a lateral resolution of ~ 20 nm.

For this purpose, certain structures - for example a pore of a cell nucleus - are stained with fluorescent dyes. Each of the dye molecules blinks at irregular intervals and represents part of the pore. The image of the complete nuclear pores is therefore not initially visible, but arises after the image processing by the superposition of several thousand images.

With the dSTORM technique, the resolution of a conventional light microscope can be increased by a factor of ten. "It allows, for example, to visualise the architecture of a cell down to its molecular level," explains Hannah Heil. The researcher is doing her doctorate at the Rudolf Virchow Center of the University of Würzburg in the group of Prof. Katrin Heinze.

However, the photon statistics itself define a virtual resolution limit in resolution. To address this issue, Katrin Heinze had the idea to use relatively simple biocompatible nanocoatings to boost the signal.

In a joined effort with Markus Sauer and colleagues from the faculty of Physics, Hannah Heil designed and fabricated metal-dielectric nanocoatings that behave like a tunable mirror. It almost doubles the resolution.

Mirror, mirror on the wall: Which image is the sharpest of them all?

They vapor-deposited a coverslip, on which the cells are placed during observation, with a thin reflective nano-coating consisting of silver and transparent silicon nitrite. The coating is biocompatible, so it does not damage the cell.

With this method, the two groups achieved two effects: on the one hand, the mirror reflected the light emitted to the microscope, which increased the brightness of the fluorescence signal and thus also the effective image sharpness.

There is also a second phenomenon: the emitted and the reflected light waves are superimposed. This creates so-called interference. Depending on the distance to the mirror, the light is amplified or attenuated. "In this way, we primarily see structures in a certain image plane," says Heil.

"Everything that is above or below and could possibly disturb the image is, on the other hand, hidden." To ensure that the exact parts of the image become visible, the thickness of the transparent layer applied to the mirror must be chosen appropriately. Among other things, Heinze and Heil use computer simulations to tailor the coating according to the object.

Overall, the method is surprisingly easy to use, says Hannah Heil. "That's what I really like about our approach." Prof. Heinze adds: "Except for the cheap metal-dielectric coated coverslip there is no need of any additional microscope hardware or software to boost the localization precision, and thus is a fantastic add-on in advanced microscopy."

People
Prof. Dr. Katrin Heinze has been head of a research group at the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg since 2011. Since 2017 she is University Professor of Molecular Microscopy.

Since 2009 Prof. Dr. Markus Sauer has been head of the Department of Biotechnology and Biophysics at Biocenter at the University of Würzburg.

Wissenschaftliche Ansprechpartner:

Hannah Heil (Research Group Heinze, Rudolf Virchow Center, University of Würzburg)
Tel. +49 (0)931 31 89609, hannah.heil@uni-wuerzburg.de

Prof. Dr. Katrin Heinze (Rudolf Virchow Center, University of Würzburg)
Tel. +49 (0)931 31 84214, katrin.heinze@virchow.uni-wuerzburg.de

Prof. Dr. Markus Sauer (Biocenter, University of Würzburg)
Tel. +49 (0)931 31 84507, m.sauer@uni-wuerzburg.de

Dr. Daniela Diefenbacher (Press Office, Rudolf Virchow Center, University of Würzburg)
Tel. +49 (0)931 3188631, daniela.diefenbacher@uni-wuerzburg.de

Originalpublikation:

Hannah S. Heil, Benjamin Schreiber, Ralph Götz, Monika Emmerling, Marie-Christine Dabauvalle, Georg Krohne, Sven Hoefling, Martin Kamp, Markus Sauer, Katrin G. Heinze: Sharpening emitter localization in front of a tuned mirror; Light: Science and Applications; DOI: https://doi.org/10.1038/s41377-018-0104-z

Weitere Informationen:

https://www.uni-wuerzburg.de/en/rvz/rvz-news/single/news/new-method-gives-micros...

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>