Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method gives microscope a boost in resolution

10.12.2018

Mirrored slides now allow significantly sharper images / 20x better resolution than an ordinary light microscope - Scientists at the University of Würzburg have been able to boost current super-resolution microscopy by a novel tweak. They coated the glass cover slip as part of the sample carrier with tailor-made biocompatible nanosheets that create a "mirror effect". This method shows that localizing single emitters in front of a metal-dielectric coating leads to higher precision, brightness and contrast in Single Molecule Localization Microscopy (SMLM). The study was published in the Nature journal "Light: Science and Applications".

The sharpness of a light microscope is limited by physical conditions: structures that are closer together than 0.2 thousandths of a millimeter blur into each other - they can no longer be distinguished from each other.


Conventional (left) and mirror-enhanced dSTORM (right) images of a single NPC rings.

Julius-Maximilians-Universität Würzburg


Schematic drawing of a nuclear pore complex labeled with red fluorescent dyes, engulfed by the nuclear membrane and placed on a mirror coating

Julius-Maximilians-Universität Würzburg

The cause of this blurring is diffraction: In simple terms, it prevents that light rays can not be bundled with arbitrary precision. Each point-shaped object is therefore not shown as a point, but as a "blurry spot".

With mathematical methods, the resolution can still be drastically improved. One would calculate its exact center from the brightness distribution of the "blurry spot".

However, it only works if two closely adjacent points of the object are initially not simultaneously but subsequently visible, and are merged later in the image processing. This temporal decoupling prevents superimposition of the "blurry spot".

Researchers in life sciences have been using this tricky method for some years, for super high-resolution light microscopy of cells.

One type of this method was developed in the research group of Prof. Dr. Markus Sauer at the University of Würzburg: direct stochastic optical reconstruction microscopy (dSTORM). This powerful SMLM technique can provide a lateral resolution of ~ 20 nm.

For this purpose, certain structures - for example a pore of a cell nucleus - are stained with fluorescent dyes. Each of the dye molecules blinks at irregular intervals and represents part of the pore. The image of the complete nuclear pores is therefore not initially visible, but arises after the image processing by the superposition of several thousand images.

With the dSTORM technique, the resolution of a conventional light microscope can be increased by a factor of ten. "It allows, for example, to visualise the architecture of a cell down to its molecular level," explains Hannah Heil. The researcher is doing her doctorate at the Rudolf Virchow Center of the University of Würzburg in the group of Prof. Katrin Heinze.

However, the photon statistics itself define a virtual resolution limit in resolution. To address this issue, Katrin Heinze had the idea to use relatively simple biocompatible nanocoatings to boost the signal.

In a joined effort with Markus Sauer and colleagues from the faculty of Physics, Hannah Heil designed and fabricated metal-dielectric nanocoatings that behave like a tunable mirror. It almost doubles the resolution.

Mirror, mirror on the wall: Which image is the sharpest of them all?

They vapor-deposited a coverslip, on which the cells are placed during observation, with a thin reflective nano-coating consisting of silver and transparent silicon nitrite. The coating is biocompatible, so it does not damage the cell.

With this method, the two groups achieved two effects: on the one hand, the mirror reflected the light emitted to the microscope, which increased the brightness of the fluorescence signal and thus also the effective image sharpness.

There is also a second phenomenon: the emitted and the reflected light waves are superimposed. This creates so-called interference. Depending on the distance to the mirror, the light is amplified or attenuated. "In this way, we primarily see structures in a certain image plane," says Heil.

"Everything that is above or below and could possibly disturb the image is, on the other hand, hidden." To ensure that the exact parts of the image become visible, the thickness of the transparent layer applied to the mirror must be chosen appropriately. Among other things, Heinze and Heil use computer simulations to tailor the coating according to the object.

Overall, the method is surprisingly easy to use, says Hannah Heil. "That's what I really like about our approach." Prof. Heinze adds: "Except for the cheap metal-dielectric coated coverslip there is no need of any additional microscope hardware or software to boost the localization precision, and thus is a fantastic add-on in advanced microscopy."

People
Prof. Dr. Katrin Heinze has been head of a research group at the Rudolf Virchow Center for Experimental Biomedicine at the University of Würzburg since 2011. Since 2017 she is University Professor of Molecular Microscopy.

Since 2009 Prof. Dr. Markus Sauer has been head of the Department of Biotechnology and Biophysics at Biocenter at the University of Würzburg.

Wissenschaftliche Ansprechpartner:

Hannah Heil (Research Group Heinze, Rudolf Virchow Center, University of Würzburg)
Tel. +49 (0)931 31 89609, hannah.heil@uni-wuerzburg.de

Prof. Dr. Katrin Heinze (Rudolf Virchow Center, University of Würzburg)
Tel. +49 (0)931 31 84214, katrin.heinze@virchow.uni-wuerzburg.de

Prof. Dr. Markus Sauer (Biocenter, University of Würzburg)
Tel. +49 (0)931 31 84507, m.sauer@uni-wuerzburg.de

Dr. Daniela Diefenbacher (Press Office, Rudolf Virchow Center, University of Würzburg)
Tel. +49 (0)931 3188631, daniela.diefenbacher@uni-wuerzburg.de

Originalpublikation:

Hannah S. Heil, Benjamin Schreiber, Ralph Götz, Monika Emmerling, Marie-Christine Dabauvalle, Georg Krohne, Sven Hoefling, Martin Kamp, Markus Sauer, Katrin G. Heinze: Sharpening emitter localization in front of a tuned mirror; Light: Science and Applications; DOI: https://doi.org/10.1038/s41377-018-0104-z

Weitere Informationen:

https://www.uni-wuerzburg.de/en/rvz/rvz-news/single/news/new-method-gives-micros...

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>