Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New measurement of the mass of a strange atomic nucleus achieves very high degree of precision

17.06.2015

Results obtained at the MAMI particle accelerator in Mainz should add to the understanding of the "strong force"

An international team of physicists working at the Institute of Nuclear Physics at Johannes Gutenberg University Mainz (JGU) in Germany has measured the mass of a "strange" atomic nucleus with the aid of an innovative technique that is capable of significantly greater precision than that of previous methods.


View of the experimental hall at the MAMI accelerator: The mass of a strange atomic nucleus was measured with the help of the magnetic spectrometer that can be seen in the photo.

Ill.: Institute of Nuclear Physics, JGU

The researchers were able, for the first time worldwide, to observe the radioactive decay of artificially generated nuclei of super-heavy hydrogen at the Mainz MAMI particle accelerator using a combination of several magnetic spectrometers. They could then precisely determine the mass on the basis of accurate measurement of the decay product. The results have been published in the journal Physical Review Letters.

Measurements such as this are particularly valuable when it comes to understanding the fundamental "strong force" that holds nuclei together and is thus essentially responsible for the stability of matter. Even after decades of research, many of the details of this force are still unknown. The nuclei in matter that surrounds us consist of two building blocks, i.e., positively charged protons and electrically neutral neutrons. These interact in complex ways with and among each other.

What is important is that there is a powerful attraction between these particles that binds them together to form atomic nuclei and stops them flying apart. Then the mass of an atomic nucleus is less than that of the sum of the mass of its components. According to Einstein's famous formula E = mc2, this "missing mass" is represented by the energy of the bonds in a nucleus. This means that if the mass of a nucleus can be accurately measured, it is possible to determine the binding energy and thus draw conclusions with regard to the nature of the strong force.

Other strongly interacting particles, in addition to protons and neutrons, can theoretically be bound in a nucleus as well, such as so-called hyperons that are also known as "strange" neutrons. An atomic nucleus in which they are present is thus called a strange atomic nucleus or hypernucleus. It is possible to generate these artificially in a particle accelerator such as MAMI.

Such exotic particles can exist on earth for just a fraction of a second but it is possible that there may be large numbers of them deep in the cores of neutron stars, which are also held together by the strong force. There are many, as yet, unanswered questions about these spectacular star remnants out there in deepest space: How large are neutron stars? What is in the interior of their unobservable cores? How hot and how dense is it there?

Otherwise inaccessible details about the strong forces that not only hold strange nuclei but also neutron stars together can be determined by means of the study of hypernuclei and this approach can help explain the structure of minuscule atomic nuclei and gigantic neutron stars and how they are related.

Using the Mainz Microtron, the team of researchers headed by Professor Josef Pochodzalla and Dr. Patrick Achenbach generated a very heavy form of the common element hydrogen with a nucleus comprised of one proton, two neutrons, and a hyperon. This artificially created strange atomic nucleus has a mass approximately twice that of deuterium, the heaviest stable form of natural hydrogen.

In order to determine the mass of the strange hydrogen nucleus as accurately as possible, the nuclear physicists observed the radioactive decay of the nucleus using a combination of several magnetic spectrometers. In this context, these devices have a function similar to that of an electron microscope, although they actually operate on a much larger scale.

They use a strong magnetic field to guide particles and bring them together at a location where they can be measured by particle detectors. In order to achieve the greatest accuracy possible, the spectrometers are nearly 15 meters across and weigh more than 200 tons. Also necessary to obtain extremely precise results are a high energy, accurate focus, and stability of the accelerated particle beam. All this is possible to achieve using MAMI.

The researchers in Mainz were thus able to measure the binding energy of the hyperon in the nucleus of super-heavy hydrogen. It is roughly equivalent to the total binding energy in the nucleus of deuterium. Of particular interest to the researchers is the still unanswered question of whether this binding energy changes when the hyperon is present in an equally heavy helium nucleus instead of a hydrogen nucleus. If so, it would mean that the force of attraction exerted by the protons and neutrons on the hyperon differs in the two nuclei, thus breaking the symmetry between the components making up the nuclei.

Publication:
A. Esser et al. (Kollaboration A1)
Observation of Λ-H-4 Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering
Physical Review Letters, 9 June 2015
DOI: 10.1103/PhysRevLett.114.232501
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.232501


Further information:
PD Dr. Patrick Achenbach
Institute of Nuclear Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25777
e-mail: patrick@kph.uni-mainz.de
http://www.kph.uni-mainz.de/eng/

Weitere Informationen:

http://www.uni-mainz.de/presse/19466_ENG_HTML.php - press release ;
http://www.kph.uni-mainz.de/eng/ - Institute of Nuclear Physics

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Ultra ultrasound to transform new tech
17.01.2019 | Swansea University

nachricht Fraunhofer FHR radar analyzes deorbiting systems for more sustainability in space travel
17.01.2019 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>