Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New industrial research technique for analyzing gallium nitride on the nanometer scale

07.11.2014

Gallium nitride is difficult to produce and difficult to handle – and the key to the development of blue LEDs, which won this year’s Nobel Prize in Physics.

The award went to three Japanese researchers who were the first to produce high-quality gallium nitride (GaN) layers and put them into series production back in 1993. Now, researchers and engineers around the world are working on analyzing and optimizing this material.


Near-field microscope with a fragment of a gallium nitride wafer.

Picture Source: Fraunhofer ILT, Aachen, Germany.

The Fraunhofer Institute for Laser Technology ILT has worked closely with RWTH Aachen University’s I. Institute of Physics (IA) to develop an analysis technology that, for the very first time, allows the structural and electronic properties of GaN and GaN composites to be studied optically on the nanometer level.

Industry’s need for mass-producible LEDs is growing, whether for smartphone, computer and TV screens or for the lighting sector. One important reason is that LEDs use many times less energy than incandescent bulbs, halogen bulbs or even energy-saving bulbs. The development of the blue LED was the last step in creating white LED light – a particularly pleasant light that significantly boosts user acceptance of the technology, for instance in home applications. Developing increasingly efficient components will rely on a quick and cost-effective analysis technique.

Optical analysis on the nanometer scale

The resolution of conventional optical microscopes reaches its physical limits when confronted with objects on the nanometer scale. Because of the light source employed, tiny structures in the nanometer range – such as those you find in modern semiconductor components – cannot be brought into focus. This rules out optical analysis techniques. Near-field microscopy circumvents this fundamental limitation and penetrates the nanometer domain to provide an optical view. This places extremely high demands on the light source used.

Aachen laser system for using near-field microscopy techniques on gallium nitride

In collaboration with fellow researchers from the Chair for Experimental Physics at RWTH Aachen University, scientists from Fraunhofer ILT have spent the past few years developing an innovative, broadband tunable laser system that is geared toward the particular requirements of semiconductor analysis. Wavelength can be adjusted to the material under inspection, which enables the new system to investigate a wide range of materials. 

In contrast to the solutions available on the market to date and those employed in research and development, the new system from Aachen provides the means for much faster spectroscopic analyses. It has also opened up access to material systems that were beyond the capacities of previous systems. This includes GaN and GaN composites.

Using the new analysis system, last year the researchers in Aachen were able to obtain an optical 2D image showing tensions in the crystal structure of undoped GaN wafers for the very first time. Computer simulations helped quantify the exact extent of the tension. Recently the technique was also applied to a variety of doped GaN layers within complex structures. It’s the first time an optical technique has been available to study the structural and electronic properties of GaN and GaN composites on the nanometer scale.

Cost-effective, precise and non-destructive

Near-field microscopy offers cost and quality benefits over standard analysis techniques. The structural properties of thin GaN layers are currently studied using transmission electron microscopy; however, the costs incurred are extremely high, due in part to the laborious sample preparation process. Near-field analysis can usually be conducted without any preparation. Another benefit concerns secondary ion mass spectrometry, which is used to study the electronic properties.

Although this technique can be used to determine electronic properties along an axis at the nanometer level, it isn’t yet possible to laterally ascertain the concentration of doping atoms at a comparable resolution. The technique also damages the samples. In contrast, near-field microscopy offers nanometer-scale resolution in all dimensions. It is a completely non-destructive technique and can be implemented under normal conditions.

Potential applications for the analysis system

Near-field microscopy is suitable for a range of applications. When used in close consultation with the developers of new semiconductor components, for instance, the method can help optimize process parameters in a targeted way. The analysis also aids in the understanding of physical processes from a very early stage in development, particularly at the interfaces between the individual layers. These findings can shape subsequent development stages significantly. In high-frequency and power electronics, too, GaN is becoming more and more common as a component due to its physical properties. Near-field microscopic analysis techniques are ideally suited for researching these materials.

Contact

Dr. Fabian Gaußmann
Laser Measurement Technology
Phone +49 241 8906-489
fabian.gaussmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT

Prof. Thomas Taubner
I. Institute of Physics (IA)
Phone +49 241 80 20260
taubner@physik.rwth-aachen.de
RWTH Aachen University


Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.rwth-aachen.de

Petra Nolis | Fraunhofer-Institut

More articles from Physics and Astronomy:

nachricht UNLV study unlocks clues to how planets form
13.12.2018 | University of Nevada, Las Vegas

nachricht Unprecedented Views of the Birth of Planets
13.12.2018 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>