Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gravity map suggests Mars has a porous crust

14.09.2017

NASA scientists have found evidence that Mars' crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet's interior structure and evolution.

A lower density likely means that at least part of Mars' crust is relatively porous. At this point, however, the team cannot rule out the possibility of a different mineral composition or perhaps a thinner crust.


A new map of the thickness of Mars' crust shows less variation between thicker regions (red) and thinner regions (blue), compared to earlier mapping. This view is centered on Valles Marineris, with the Tharsis Montes near the terminator to its west. The map is based on modeling of the Red Planet's gravity field by scientists at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The team found that globally Mars' crust is less dense, on average, than previously thought, which implies smaller variations in crustal thickness.

Credit: NASA/Goddard/UMBC/MIT/E. Mazarico

"The crust is the end-result of everything that happened during a planet's history, so a lower density could have important implications about Mars' formation and evolution," said Sander Goossens of NASA's Goddard Space Flight Center in Greenbelt, Maryland. Goossens is the lead author of a Geophysical Research Letters paper describing the work.

The researchers mapped the density of the Martian crust, estimating the average density is 2,582 kilograms per meter cubed (about 161 pounds per cubic foot). That's comparable to the average density of the lunar crust. Typically, Mars' crust has been considered at least as dense as Earth's oceanic crust, which is about 2,900 kilograms per meter cubed (about 181 pounds per cubic foot).

The new value is derived from Mars' gravity field, a global model that can be extracted from satellite tracking data using sophisticated mathematical tools. The gravity field for Earth is extremely detailed, because the data sets have very high resolution. Recent studies of the Moon by NASA's Gravity Recovery and Interior Laboratory, or GRAIL, mission also yielded a precise gravity map.

The data sets for Mars don't have as much resolution, so it's more difficult to pin down the density of the crust from current gravity maps. As a result, previous estimates relied more heavily on studies of the composition of Mars' soil and rocks.

"As this story comes together, we're coming to the conclusion that it's not enough just to know the composition of the rocks," said Goddard planetary geologist Greg Neumann, a co-author on the paper. "We also need to know how the rocks have been reworked over time."

Goossens and colleagues started with the same data used for an existing gravity model but put a new twist on it by coming up with a different constraint and applying it to obtain the new solution. A constraint compensates for the fact that even the best data sets can't capture every last detail. Instead of taking the standard approach, known to those in the field as the Kaula constraint, the team created a constraint that considers the accurate measurements of Mars' elevation changes, or topography.

"With this approach, we were able to squeeze out more information about the gravity field from the existing data sets," said Goddard geophysicist Terence Sabaka, the second author on the paper.

Before taking on Mars, the researchers tested their approach by applying it to the gravity field that was in use before the GRAIL mission. The resulting estimate for the density of the moon's crust essentially matched the GRAIL result of 2,550 kilograms per meter cubed (about 159 pounds per cubic foot).

From the new model, the team generated global maps of the crust's density and thickness. These maps show the kinds of variations the researchers expect, such as denser crust beneath Mars' giant volcanoes.

The researchers note that NASA's InSight mission -- short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- is expected to provide the kinds of measurements that could confirm their finding. This Discovery Program mission, scheduled for launch in 2018, will place a geophysical lander on Mars to study its deep interior.

###

For the team's model, along with the derived density map and crustal thickness models, visit: https://pgda.gsfc.nasa.gov

For more about NASA's Mars explorations, visit: http://www.nasa.gov/mars

Elizabeth Zubritsky | EurekAlert!

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>