Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'fuzzy' dark matter research disrupts conventional thinking

04.10.2019

'Fuzzy' dark matter theory simulated fully for the first time

New research conducted at the University of Sussex has simulated dark matter in a new way for the first time, disrupting conventional thinking about the make-up of the universe. The research, published in Physical Review Letters, was done alongside Princeton, Harvard, Cambridge and MIT universities and others.


Simulations of how galaxies form in cold, warm and fuzzy (left to right) dark matter scenarios.

Credit: Universities of Princeton, Sussex, Cambridge


This image shows how the distribution of dark matter gas and start (left to right) appear in the fuzzy dark matter scenario.

Credit: Universities of Princeton, Cambridge and Sussex

Scientists have long suspected that a large proportion of the universe is made up of invisible particles, or dark matter, and that these must be very cold and heavy. But the search for proof has been elusive, leading researchers to consider alternative theories.

The new simulations show how stars and galaxies might have formed and grouped together at the origin of the universe if dark matter is very light in mass, rather than very heavy as most scientists have assumed.

A University of Sussex physicist worked with an international team to calculate how dark matter would behave, and how early galaxies would have looked, if it was 'fuzzy' and extremely light in mass.

The 'fuzzy' dark matter theory imagines that dark matter is comprised of tiny particles which are so light that they behave like quantum matter, and move in waves. Their quantum nature is seen on galactic scales. Conventionally, dark matter has been imagined to be cold (ie, where the particles don't move). But doubts have set in around this theory as particle accelerators have so far been unable to create such dark matter. The new 'fuzzy dark matter' theory has gained in popularity as it makes sense according to particle physics, but it had never been simulated fully before.

The simulations show the shapes galaxies would have made at the beginning of the universe if dark matter was fuzzy and extremely light. The team contrasts them with the familiar galaxies formed in the cold dark matter scenario. As the universe has aged, galaxies have changed shape. But when the new generation of telescopes is launched - including the James Webb Space Telescope, which Sussex physicists are working on - scientists expect to be able to look further back into the history of the universe to see what it used to look like.

Dr Anastasia Fialkov, who conducted the research while at the University of Sussex, said:

"The nature of dark matter is still a mystery. The fuzzy dark matter theory makes sense in terms of fundamental physics, for instance, string theory, and so is an interesting dark matter candidate. And if the fuzzy dark matter theory is proven right by the new generation of powerful telescopes then we will have nailed down the nature of dark matter: one of the greatest mysteries of all.

"All around the world researchers are looking for dark matter, and particle physicists are building models for dark matter, and many of them have assumed that dark matter is 'cold'. The fuzzy dark matter theory, where dark matter behaves as a wave on galactic scales, now presents a credible alternative scenario: that dark matter is tiny, moves in waves behaving like quantum matter. Our simulations are the first ones to address galaxy formation in the context of fuzzy dark matter."

Professor Kathy Romer, astrophysicist with the School of Mathematical and Physical Sciences at the University of Sussex, said:

"The hunt for Dark Matter is a bit like 'Where's Wally?''. Dedicated work over the last few decades by astronomers and particle physicists has given us some of the clues we need to look for, equivalent to Wally's stripey jumper and hat, but we still haven't found it. Maybe we shouldn't have been looking for Wally (cold dark matter) all this time but should have been looking for Wenda (fuzzy dark matter) instead. This new research is so important because it provides another clue for us to look for, equivalent to Wenda's stripey socks."

Philip Mocz, Einstein Fellow at Princeton, says:

"Dark matter is a sort of cradle in which galaxies are born, and the cradle shapes also shape the galaxies. Different dark matter models predict different cradle shapes, particularly in the young Universe. It's a great place to go looking and get new clues about what dark matter is."

What does the research show?

The researchers found that if dark matter is cold, then galaxies in the early universe would have formed in nearly spherical "halos". But if dark matter is fuzzy, the early universe would have looked different, with galaxies forming first in extended tails, or 'filaments'. And the size, shape, and fragmentation of these filaments is different in each scenario.

The cold dark matter hypothesis works well to describe the large-scale structure of the observable universe. And so, most models of galaxy formation are based on the assumption that dark matter is cold. But there are discrepancies between observations and predictions of cold dark matter. If you look at very small galaxies, the distribution of dark matter doesn't fit with what the predictions of theoretical models. Moreover, as particle accelerators have not yet discovered dark matter, cold dark matter model becomes less and less appealing.

The team has developed first realistic predictions of what early galaxies may have looked like in a universe dominated by fuzzy dark matter. The aim is to provide a map for upcoming telescopes, such as the James Webb Space Telescope, that may be able to look far enough back in time to spot the earliest galaxies. If they see galaxies with the tails, or 'filaments' as simulated in this research, it may start to confirm that dark matter is fuzzy in nature.

Dr Fialkov has now moved to the University of Cambridge.

Media Contact

Anna Ford
a.ford@sussex.ac.uk
01-273-873-685

 @sussexunipress

http://www.sussex.ac.uk 

Anna Ford | EurekAlert!
Further information:
https://www.sussex.ac.uk/news/research?id=49838
http://dx.doi.org/10.1103/PhysRevLett.123.141301

More articles from Physics and Astronomy:

nachricht New gravitational-wave model can bring neutron stars into even sharper focus
22.05.2020 | University of Birmingham

nachricht Electrons break rotational symmetry in exotic low-temp superconductor
20.05.2020 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>