Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New experiment proves violation of Bell’s inequality

17.07.2017

Team of LMU/MPQ-scientists closes last “loopholes” for advocates of “local realism”

“Nature is different from what we observe with our five senses.”, summarizes Professor Harald Weinfurter (Ludwig-Maximilians-Universität (LMU) Munich and Max Planck Institute of Quantum Optics (MPQ), Garching) the results of recent measurements carried out by his team in order to test Bell’s inequality.


Artist’s view of the experiment in which two atoms are being entangled over a distance of 400 metres. (Graphic: Wenjamin Rosenfeld)

In their experiment the physicists produced entanglement between two atoms that were located 400 metres apart and determined their properties immediately after with high efficiency. The results of these measurements clearly contradict “local-realism” which is the fundament of classical physics.

In this world view properties of objects exist independent of being observed (realism), and no information or physical influence can propagate faster than the speed of light (locality). (Phys. Rev. Lett., 7 July 2017)

Local realism perfectly describes what we experience in our everyday life. However, the world of quantum particles is ruled by laws that are quite the opposite: two particles can be connected in a non-local way over large distances, and the property of a particle may be defined not until the instant it is being measured. In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen emphasized these inconsistencies of quantum mechanics with local-realism in a foundational theoretical paper.

In 1964 the Irish physicist John Bell showed that a certain inequality can be used to test the validity of either world view experimentally. Quantum me-chanics can violate the inequality, whereas local realism is in agreement.

The test requires the entanglement of two quantum particles as well as the successive measurement of their properties. Though all experiments so far have confirmed the predictions of quantum mechanics, advocates of local realism still found loopholes for their classical interpretation.

The locality loophole concerns the strict spacelike separation of the two observers. In the Munich experiment, this is warranted by the fact that one of the laboratories is located in the basement of the physics department (Schellingstr.), the other one in the basement of the economics department of the LMU (Schackstr.).

In each lab, a single rubidium atom is caught in an optical trap and excited to emit a single photon. That way, the spin-state of the atom and the polarization state of the photon are being entangled. The photons are coupled into optical fibres and guided to a set-up where they are brought to interference.

“Our two observer stations are independently operated and are equipped with their own laser and control systems”, Dr. Wenjamin Rosenfeld, leader of the project, points out. “Because of the 400 metres distance between the laboratories, communication from one to the other would take 1328 nanoseconds, which is much more than the duration of the measurement process. So, no information on the measurement in one lab can be used in the other lab. That’s how we close the locality loophole.”

“Simultaneous registration of the photons that were brought to interference heralds the entanglement of the two rubidium atoms,” Harald Weinfurter explains. Quantum entanglement of two particles implies a strong correlation of their properties.

As a consequence, the spins of the two trapped rubidium atoms are expected to point into the same direction, or into the opposite direction, depending on the kind of entanglement. In a measurement run of eight days the scientists collected around 10 000 events. The analysis of the data showed, that far more atoms were in the same state (or in the opposite state respectively) than would be expected for a classical distribution.

In fact, a violation of Bell’s inequality of more than 6 standard deviations was obtained – much more than in similar experiments conducted in the Netherlands. “We were able to determine the spin-state of the atoms very fast and very efficiently. Thereby we closed a second potential loophole: the assumption, that the observed violation is caused by an incomplete sample of detected atom pairs”, says Wenjamin Rosenfeld.

On the one hand, the proof of the violation of Bell’s inequality in an experiment, which closes both locality and detection loophole, is of fundamental importance for our understanding of nature. On the other hand, the scientists envision the possibility to use the method for the safe encoding of messages. The application of the method to quantum cryptography would still require further improvement of the measurement quality. The system could also be used as a quantum repeater that would make it possible to transmit quantum information over long distances in an efficient way. Olivia Meyer-Streng

Original publication:

Wenjamin Rosenfeld, Daniel Burchardt, Robert Garthoff, Kai Redeker, Norbert Ortegel, Markus Rau, and Harald Weinfurter
Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes
Phys. Rev. Lett., 7 July 2017, DOI: 10.1103/PhysRevLett.119.010402

Contact:

Prof. Dr. Harald Weinfurter
Ludwig-Maximilians-Universität München
Department of Physics
Schellingstr. 4/III
80799 Munich, Germany
Phone: +49 (0)89 / 2180 - 2044
E-mail: harald.weinfurter@physik.uni-muenchen.de

Dr. Wenjamin Rosenfeld
Ludwig-Maximilians-Universität München
Department of Physics
Schellingstr. 4/III
80799 Munich, Germany
Phone: +49 (0)89 / 2180 - 2045
E-mail: wenjamin.rosenfeld@physik.uni-muenchen.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>