Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach uses 'twisted light' to increase efficiency of quantum cryptography systems

23.03.2015

Researchers demonstrate how to encode 2.05 bits per photon, doubling existing systems that use light polarization

Researchers at the University of Rochester and their collaborators have developed a way to transfer 2.05 bits per photon by using "twisted light." This remarkable achievement is possible because the researchers used the orbital angular momentum of the photons to encode information, rather than the more commonly used polarization of light. The new approach doubles the 1 bit per photon that is possible with current systems that rely on light polarization and could help increase the efficiency of quantum cryptography systems.

Quantum cryptography promises more secure communications. The first step in such systems is quantum key distribution (QKD), to ensure that both the sender and receiver - usually referred to as Alice and Bob - are communicating in such a way that only they know what is being sent. They are the only ones who hold the "key" to the messages, and the systems are set up in such a way that the presence of any eavesdropper would be identified.

In the paper, published in New Journal of Physics today, Mohammad Mirhosseini and his colleagues describe a proof-of-principle experiment that shows that using OAM to encode information rather than polarization opens up the possibility of high-dimensional QKD. Mirhosseini, a Ph.D. student in Robert W. Boyd's group at the University of Rochester's Institute of Optics, explains that they were able to encode a seven dimensional "alphabet" - that is, seven letters or symbols - using both the orbital angular momentum (OAM) of the photons and their angular position (ANG). These two properties of the photons form what physicists refer to as mutually unbiased bases, a requirement for QKD. Using mutually unbiased bases, the correct answer is revealed only if Alice encodes the information using a particular basis and Bob measures in that same basis.

In QKD, once they have generated a long, shared key, Alice and Bob publicly announce the basis (or "alphabet") they have used for each symbol in the key. They then compare what alphabet was used for sending and which one for receiving. They only keep the part of the key in which they have used the same "alphabet." The letters they keep produce a secure key, which they can use to encrypt messages and transmit these with regular encryption without the need for quantum cryptography.

If for any reason their communication is intercepted, because of a fundamental property of quantum mechanics, there will be discrepancies between Alice and Bob's keys. To check for this, Alice and Bob sacrifice a short part of their key. They share this publicly and identify any discrepancies. This lets them know whether their connection is secure and, if not, they will stop the communication.

The researchers showed that using their system they were able to generate and detect information at a rate of 4kHz and with 93% accuracy. A long term goal of the research is to realize secure communications at GHz transmission rates, which is desirable for telecommunication applications.

"Our experiment shows that it is possible to use "twisted light" for QKD and that it doubles the capacity compared to using polarization," said Mirhosseini. "Unlike with polarization, where it is impossible to encode more than one bit per photon, "twisted light" could make it possible to encode several bits, and every extra bit of information encoded in a photon means fewer photons to generate and measure."

In a previous experiment using a strong laser beam instead of single photons, Boyd's team were able to measure up to 25 modes of OAM and ANG. This is equivalent to having 25 letters available in your "alphabet" rather than 7. This shows the potential for a system like the one described in the new paper to have the capacity to transmit and measure 4.17 bits per photon using more sophisticated equipment.

Mirhosseini acknowledges that the real-world challenges are not straightforward to overcome but when it comes to QKD, he is excited about the possibilities their system opens up.

###

Mirhosseini's collaborators included his colleagues O. S. Magana-Loaiza, M. N. O'Sullivan, B. Rodenburg, M. Malik (now at the IQOQI in Vienna), and advisor Robert W. Boyd (who also holds the Canada Excellence Research Chair in Quantum Nonlinear Optics at the University of Ottawa) at the University of Rochester; M. P. J. Lavery and M. J. Padgett from the University of Glasgow; and D. J. Gauthier from Duke University. The researchers acknowledge funding from the Defense Threat Reduction Agency and the Defense Advanced Research Projects Agency.

The Institute of Optics is part of the University of Rochester's Hajim School of Engineering and Applied Sciences.

Media Contact

Leonor Sierra
lsierra@ur.rochester.edu
585-276-6264

 @UofR

http://www.rochester.edu 

Leonor Sierra | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>