Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 2D Spectroscopy Methods

04.07.2018

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy. Various methods are known in literature. But generally only the behaviour of a single excitation and its consequences are investigated.


Laser pulse sequences (u.l.) cause 2D spectra (u.r.): In EEI2D spectroscopy (b.l.), two originally separate excitations meet. With 2D mass spectrometry (r.), ion photoproducts are detected.

(Graphic: Tobias Brixner, JMU)

Now physicists and chemists of Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, have presented two novel principles of optical spectroscopy in the journal Nature Communications. Both approaches show new developments of the so-called coherent two-dimensional (2D) spectroscopy. In conventional 2D spectroscopy, scientists excite a system at a specific frequency and observe what happens at another frequency.

"Instead of starting with one excitation and analysing its dynamics, we here deploy two excitations into the same system and observe how they interact," says Professor Brixner, Head of the JMU Chair of Physical Chemistry I who is in charge of the research project at the University of Würzburg.

This gives direct access, for example, to propagation phenomena (such as energy transport) because signals in the new method arise only if two initially separated excitations move and then meet.

The scientists illustrate the idea of "exciton-exciton-interaction-two-dimensional-(EEI2D)-spectroscopy" using a perylene bisimide-based J-aggregate. "J-aggregates are among the most important classes of supramolecular structures and the class of perylene bisimide dyes is ideally suited for such experiments," Professor Frank Würthner explains; he heads the JMU Chair of Organic Chemistry II and collaborates in the study.

This method is applicable to numerous physical, chemical, biological or engineering systems, for example, to decode dynamic properties such as energy transport of natural light-harvesting systems and artificial dye aggregates.

Investigating ionization with the 2D scheme

The physicists in Tobias Brixner's team conducted further research by combining coherent 2D spectroscopy with molecular beams "This has allowed us to investigate ionization with the 2D scheme for the first time," the professor explains. For this purpose, they used mass spectrometry instead of optical detection and obtained 2D spectra not only for the parent molecule but simultaneously also for all photoproducts.

"Our main challenge was the fact that particle densities in molecular beams are very low, rendering futile any previous conventional attempts at detecting coherently emitted four-wave-mixing signals," Brixner says. Instead, the researchers observed the ion generated by the sequence of excitation pulses, thereby merging two hitherto separate fields of research, namely 2D spectroscopy and mass spectrometry.

The physicists used the method exemplarily to identify the ionization pathways of 3d Rydberg states in nitrogen dioxide. In the future, this development will allow studying the influence of the environment on the coherent dynamics in larger molecules.

Both new approaches were developed within the scope of the research projects "Solar Technologies Go Hybrid" of DFG Research Unit 1809 and the ERC project "MULTISCOPE".

Direct observation of exciton–exciton interactions, Jakub Dostál, Franziska Fennel, Federico Koch, Stefanie Herbst, Frank Würthner, Tobias Brixner. Nature Communications, 25 June 2018, DOI: 10.1038/s41467-018-04884-4, https://rdcu.be/1MqN

Coherent two-dimensional electronic mass spectrometry, Sebastian Roeding, Tobias Brixner. Nature Communications, 28 June 2018, DOI: 10.1038/s41467-018-04927-w, https://rdcu.be/14a7

Contact

Prof. Dr. Tobias Brixner, Chair of Physical Chemistry I, T.: +49 931 31-86330, brixner@phys-chemie.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>