Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron star's echoes give astronomers a new measuring stick

24.06.2015

In late 2013, when the neutron star at the heart of one of our galaxy's oddest supernovae gave off a massive burst of X-rays, the resulting echoes -- created when the X-rays bounced off clouds of dust in interstellar space -- yielded a surprising new measuring stick for astronomers.

Circinus X-1 is a freak of the Milky Way. Located in the plane of the galaxy, Circinus X-1 is the glowing husk of a binary star system that exploded a mere 2,500 years ago. The system consists of a nebula and a neutron star, the incredibly dense collapsed core of the exploded star, still in the orbital embrace of its companion star.


Circinus X-1 is a bizarre and sometimes frenetic source of X-rays in our galaxy. Residing in the plane of the Milky Way, where it cannot be observed by optical telescopes because of obscuring clouds of interstellar dust, Circinus X-1 is the glowing husk of a binary star system that exploded in a supernova event just 2,500 years ago. It consists of a very dense neutron star locked in the orbital embrace of a companion star. The system is called an X-ray binary because it flashes in X-rays as material from the companion star is sucked onto the dense neutron star.

Credit: NASA/Chandra X-ray Observatory

The system is called an X-ray binary because it emits X-rays as material from the companion star spirals onto the much denser neutron star and is heated to very high temperatures.

"In late 2013, the neutron star underwent an enormous outburst for about two months, during which it became one of the brightest sources in the X-ray sky," explains University of Wisconsin-Madison astronomy Professor Sebastian Heinz. "Then it turned dark again."

The flicker of X-rays from the odd binary system was monitored by a detector aboard the International Space Station. Heinz and his colleagues quickly mounted a series of follow-up observations with the space-based Chandra and XMM-Newton telescopes to discover four bright rings of X-rays, like ripples in a cosmic pond, all around the neutron star at the heart of Circinus X-1.

Their observations were reported June 23 in The Astrophysical Journal.

The rings are light echoes from Circinus X-1's X-ray burst. Each of the four rings, says Heinz, indicates a dense cloud of dust between us and the supernova remnant. When X-rays encounter grains of dust in interstellar space they can be deflected, and if the dust clouds are dense they can scatter a noticeable fraction of the X-rays away from their original trajectory, putting them on a triangular path.

That phenomenon, Heinz and his colleagues recognized, could give astronomers an opportunity to use the geometry of the rings and a time delay between deflected and undeflected X-rays to calculate the distance to Circinus X-1, a measurement previously unobtainable because the supernova is hidden in the dust that permeates the plane of our galaxy.

"We can use the geometry of the rings and the time delay to do X-ray tomography," Heinz explains. "Because the X-rays have traveled on a triangular path rather than a straight path, they take longer to get to us than the ones that were not scattered."

Combining those measurements with observations of the dust clouds by Australia's Mopra radio telescope, Heinz and his colleagues were able to determine which dust clouds were responsible for each of the four light echoes.

"Using this identification, we can determine the distance to the source accurately for the first time," according to the UW-Madison astronomer. "Distance measurements in astronomy are difficult, especially to sources like Circinus X-1, which are hidden in the plane of the galaxy behind a thick layer of dust -- which makes it basically impossible to observe them with optical telescopes.

"In this case, we used the dust that otherwise gets in the way to pioneer a new method of estimating distances to X-ray sources," Heinz says.

Now astronomers know that Circinus X-1, one of the Milky Way's most bizarre objects, is 30,700 light-years from Earth.

###

CONTACT: Sebastian Heinz, 608-890-1459, heinzs@astro.wisc.edu

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

PHOTO: https://uwmadison.box.com/circinus-x-1

Sebastian Heinz | EurekAlert!

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>