Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How can we use neutrinos to probe dark matter in the sun?

10.09.2010
Measuring the sun's core temperature

The existence of Dark Matter particles in the Sun's interior seems inevitable, despite dark matter never having been observed (there or elsewhere), despite intensive ongoing searches. Once gravitationally captured by the Sun, these particles tend to accumulate in its core.

In a paper to be published in the scientific journal " Science", Dr. Ilidio Lopes and Professor Joseph Silk propose that the presence of dark matter in the Sun's interior causes a significant drop in its central temperature. Their calculations have shown that, in some dark matter scenarios, an isothermal solar core (constant temperature) is formed. The authors suggest that the neutrino detectors will be able to measure these types of effects.

In another paper published in "The Astrophysical Journal Letters", the same authors suggest that, through the detection of gravity waves produced in the Sun's interior (identical to internal sea waves), Helioseismology can also independently confirm the presence of Dark Matter in the Sun.

Current detectors of solar neutrinos, Borexino and "Sudbury Neutrino Observatory" (SNO), as well as those currently being built, will be able to measure with precision the temperature in the Sun's interior. In particular, SNO is a Canadian experiment which also has European and American support. Portugal participates in the SNO and SNO+ experiments through the "Laboratório de Instrumentação e Partículas (LIP)".

The development of Helioseismology has been fundamental for increasing our scientific understanding of the Sun. The experiment Global Oscillation Low-degree Modes (GOLF) detector on the SoHO satellite seems to have identified gravity waves in the Sun for the first time. Future experiments in Helioseismology will be able to confirm these results.

Ilidio Lopes | EurekAlert!
Further information:
http://www.uevora.pt

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>