Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neutral result charges up antimatter research


Scientists push boundaries of antimatter research in quest for answers

Scientists of the international ALPHA Collaboration have once again pushed the boundaries of antimatter research with their latest breakthrough studying the properties of antihydrogen. Published today in the prestigious journal Nature, the collaboration's result improved the measurement of the charge of antihydrogen, essentially zero, by a factor of 20. Their work is the latest contribution in the quest to chase down the answer to the basic antimatter question, "If matter and antimatter were created in equal amounts during the Big Bang, where did all the antimatter go?"

This is a view from the Experimental Zone floor of the ALPHA-2 Cryostat and external solenoid assembly, with control and data acquisition electronics located on the overhead platform above the cryostat.

Photo by Robert Thompson, ALPHA-2 member, University of Calgary

"That means the electrical charge of antihydrogen - the antimatter analogue of hydrogen - can be ruled out as the answer to the antimatter question," says York University Professor Scott Menary, an ALPHA member. "The point of the experiment was to search for a clue as to how or where our predictions of nature are wrong," continues Menary. "Something is missing in our understanding otherwise the matter and antimatter at the Big Bang would have annihilated each other and there would be no universe today. The interactions of matter and antimatter must somehow be different."

Physics dictates that for every particle of matter there is an oppositely charged antiparticle with an equal mass. An antihydrogen atom should have the exact same charge as hydrogen (zero). That's because the antiproton and antielectron (positron), which make up antihydrogen, should have the exact opposite charge of the proton and electron that make up hydrogen.

Dr. Andrea Capra, a former PhD student of Menary's (now at TRIUMF) who played a major role in the analysis behind this result, says, "We take the charge of matter and antimatter for granted, however, you cannot analyze data or make an experiment assuming it's true."

This result showed that antihydrogen and hydrogen are indeed both electrically neutral at a level 20 times more precise than before. Since the antiproton charge is also known to a similar precision, the collaboration also has improved the previous best precision on the positron charge by a factor of 25. While both results uphold the Standard Model, they have constrained what possible extensions to it could be.

Capra points out that this work addresses one piece of a larger puzzle. When comparing normal matter to antimatter, he says that "there is the piece comparing their charges, the piece comparing their light spectrums, and the piece comparing how they respond to gravity." The latter piece will be investigated by a dedicated experiment, ALPHA-g, spearheaded by the University of Calgary and including the Canadian members of the collaboration.

The experiment was the first using the upgraded "ALPHA-2" system which began operation last year. The largest component, the cooling cryostat, was designed and built at TRIUMF and the University of Calgary by a team led by Mechanical Research Engineer Cam Marshall and Research Scientist (now Emeritus) Art Olin. Scientists at Simon Fraser University and the University of British Columbia also contributed to the construction and assembly of the ALPHA-2 apparatus, including the cryostat.

Marshall explained that "the cryostat houses a unique octopole magnet with the antimatter trap, into which was fed the laser spectroscopy system, microwave system, liquid helium cooling, super-conducting current leads, diagnostic wiring, and thermal shielding. A lot going on in a small space!" According to Olin, the experiment's success was "facilitated by the stable cryogenic environment and higher trapping rate of this new atom trap." The experiment was tricky because the team had to isolate the antihydrogen within a sophisticated "magnetic bottle" without it coming into contact with matter as it would then annihilate and disappear.

Having passed the first test of their upgraded apparatus with flying colours, the ALPHA Collobration is anxious to attack the other even more exciting pieces of the antimatter puzzle in the coming years.

"We will now look at the other pieces of the puzzle, such as the colour of the light emitted by antihydrogen, and test whether hydrogen and antihydrogen emit light in the same way," says Capra. "We are also working on measuring the gravitational acceleration of antihydrogen and determining whether matter and antimatter have the same gravitational behaviour. The next several years are going to be very exciting."


For More Information:

The research, "An improved limit on the charge of antihydrogen from stochastic acceleration", was published in the journal Nature at High resolution images are available at the ALPHA and CERN websites. Also, images are available of the cryostat and external solenoid assembly at CERN here and here.

About ALPHA-Canada

ALPHA is a collaboration of about 40 researchers from 40 researchers from Canada, the United Kingdom, Denmark, the United States, Sweden, Israel and Brazil. ALPHA-Canada consists of senior scientists, graduate students, and several professional staff from five Canadian institutions: The University of British Columbia, the University of Calgary, Simon Fraser University, TRIUMF and York University. See

About York University

York University has always been known for championing new ways of thinking that drive teaching and research excellence. Our 52,000 students receive the education they need to create big ideas that make an impact on the world. Meaningful and sometimes unexpected careers result from cross-discipline programming, innovative course design and diverse experiential learning opportunities. York students and graduates push limits, achieve goals and find solutions to the world's most pressing social challenges, empowered by a strong community that opens minds. York U is an internationally recognized research university - our 11 faculties and 24 research centres have partnerships with 200+ leading universities worldwide. @YorkUnews


TRIUMF is Canada's national laboratory for particle and nuclear physics and accelerator-based science. We are an international centre for discovery and innovation, advancing fundamental, applied, and interdisciplinary research for science, medicine, and business. Owned and operated by a university consortium, TRIUMF trains and inspires future leaders in science and technology. Our laboratory is a hub for inquiry and ingenuity, a Canadian centre of excellence deeply integrated into the global scientific community. TRIUMF's multidisciplinary team of roughly 500 staff and trainees collaborates with Canadian and international users who visit the laboratory to leverage our world-class facilities. Together, we drive compelling research and develop ideas and innovations that benefit humanity.

Media Contact

Sandra McLean
416-736-2100 x22097


Sandra McLean | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>