Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nothing But Net: The Physics of Free Throws

06.11.2009
Pay attention, Shaq: Two North Carolina State University engineers have figured out the best way to shoot a free throw – a frequently underappreciated skill that gets more important as the game clock winds down.

To get a swish rather than a brick, you need the best possible conditions for releasing the basketball from your hand, say Drs. Chau Tran and Larry Silverberg, mechanical and aerospace engineers at NC State and co-authors of a peer-reviewed study.

The engineers used hundreds of thousands of three-dimensional computer simulations of basketball free-throw trajectories to arrive at their conclusions. After running the simulations, Tran and Silverberg arrived at a number of major recommendations to improve free-throw shooting.

First, the engineers say that shooters should launch the shot with about three hertz of back spin. That translates to the ball making three complete backspinning revolutions before reaching the hoop. Back spin deadens the ball when it bounces off the rim or backboard, the engineers assert, giving the ball a better chance of settling through the net.

Where to aim? Tran and Silverberg say you should aim for the back of the rim, leaving close to 5 centimeters – about 2 inches – between the ball and the back of the rim. According to the simulations, aiming for the center of the basket decreases the probabilities of a successful shot by almost 3 percent.

The engineers say that the ball should be launched at 52 degrees to the horizontal. If you don’t have a protractor in your jersey, that means that the shot should, at the highest point in its arc to the basket, be less than 2 inches below the top of the backboard.

Free-throw shooters should also release the ball as high above the ground as possible, without adversely affecting the consistency of the shot; release the ball so it follows the imaginary line joining the player and the basket; and release the ball with a smooth body motion to get a consistent release speed.

“Our recommendations might make even the worst free-throw shooters – you know who you are, Shaquille O’Neal and Ben Wallace – break 60 percent from the free-throw line,” Silverberg says with tongue firmly in cheek. “A little bit of physics and a lot of practice can make everyone a better shooter from the free-throw line.”

The engineers used a men’s basketball for the study; it is heavier and a bit larger than basketballs used in women’s games. They also assumed that the basketball player doing the shooting was 6 feet 6 inches tall, and that he released the ball 6 inches above his head, so the “release height” was set to 7 feet. The free-throw line is 15 feet from the backboard, a cylinder-shaped opening that is 10 feet off the ground. Though it looks smaller, the diameter of a regulation basketball hoop is 18 inches; the diameter of a men’s basketball is a bit more than 9 inches.

Dr. Larry Silverberg, 919/515-5665 or lmsilver@ncsu.edu

Mick Kulikowski | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Matter falling into a black hole at 30 percent of the speed of light
24.09.2018 | Royal Astronomical Society

nachricht Scientists solve the golden puzzle of calaverite
24.09.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>