Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nearby planet-forming disk holds water for thousands of oceans

21.10.2011
For the first time, astronomers have detected around a burgeoning solar system a sprawling cloud of water vapor that’s cold enough to form comets, which could eventually deliver oceans to dry planets.

Water is an essential ingredient for life. Scientists have found thousands of Earth-oceans’ worth of it within the planet-forming disk surrounding the star TW Hydrae. TW Hydrae is 176 light years away in the constellation Hydra and is the closest solar-system-to-be.


An illustration depicting the sprawling cloud of cold water vapor that astronomers have detected around the burgeoning solar system at the nearby star TW Hydrae. The cold water vapor could could eventually deliver oceans to dry planets that are forming in the system. Credit: NASA/JPL-Caltech/T. Pyle (SSC/Caltech)

University of Michigan astronomy professor Ted Bergin is a co-author of a paper on the findings published in the Oct. 21 edition of Science.

The researchers used the Heterodyne Instrument for the Far-Infrared (HIFI) on the orbiting Hershel Space Observatory to detect the chemical signature of water.

“This tells us that the key materials that life needs are present in a system before planets are born,” said Bergin, a HIFI co-investigator. “We expected this to be the case, but now we know it is because have directly detected it. We can see it.”

Scientists had previously found warm water vapor in planet-forming disks close to the central star. But until now, evidence for vast quantities of water extending into the cooler, far reaches of disks where comets and giant planets take shape had not emerged. The more water available in disks for icy comets to form, the greater the chances that large amounts will eventually reach new planets through impacts.

“The detection of water sticking to dust grains throughout the planet-forming disk would be similar to events in our own solar system’s evolution, where over millions of years, these dust grains would then coalesce to form comets. These would be a prime delivery mechanism for water on planetary bodies,” said principal investigator Michiel Hogerheijde of Leiden University in the Netherlands.

Other recent findings from HIFI support the theory that comets delivered a significant portion of Earth's oceans. Researchers found that the ice on a comet called Hartley 2 has the same chemical composition as our oceans.

HIFI is helping astronomers gain a better understanding of how water comes to terrestrial planets—Earth and beyond. If TW Hydrae and its icy disk are representative of many other young star systems, as researchers think they are, then the process for creating planets around numerous stars with abundant water throughout the universe appears to be in place, NASA officials say.

The paper is titled “Detection of the Water Reservoir in a Forming Planetary System.” Also contributing are researchers from California Institute of Technology, the University of Amsterdam, the Harvard-Smithsonian Center for Astrophysics, Johns Hopkins University, the European Southern Observatory, NASA Jet Propulsion Lab and the Max-Planck-Institut für Extraterrestrische Physik.

Herschel, a European Space Agency mission with NASA participation, is an orbiting telescope that allows astronomers to observe at the far-infrared wavelengths where organic molecules and water emit their chemical signatures.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://ns.umich.edu/htdocs/releases/story.php?id=8637

Further reports about: HiFi Hydra NASA Observatory Space Water Snake giant planet organic molecule star system

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>