Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Swift spots its thousandth gamma-ray burst

09.11.2015

NASA's Swift spacecraft has detected its 1,000th gamma-ray burst (GRB). GRBs are the most powerful explosions in the universe, typically associated with the collapse of a massive star and the birth of a black hole.

"Detecting GRBs is Swift's bread and butter, and we're now at 1,000 and counting," said Neil Gehrels, the Swift principal investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The spacecraft remains in great shape after nearly 11 years in space, and we expect to see many more GRBs to come."


This illustration shows the positions of 1,000 Swift GRBs on an all-sky map oriented so that the plane of our galaxy, the Milky Way, runs across the center. Bursts are color coded by year, and the location of GRB 151027B is shown at lower right. An annual tally of the number of bursts Swift has detected appears below the label for each year. Background: An infrared view from the Two Micron All-Sky Survey.

Credits: NASA's Goddard Space Flight Center and 2MASS/J. Carpenter, T. H. Jarrett, and R. Hurt

A GRB is a fleeting blast of high-energy light, often lasting a minute or less, occurring somewhere in the sky every couple of days. Scientists are looking for exceptional bursts that offer the deepest insights into the extreme physical processes at work.

Shortly before 6:41 p.m. EDT on Oct. 27, Swift's Burst Alert Telescope detected the 1,000th GRB as a sudden pulse of gamma rays arising from a location toward the constellation Eridanus. Astronomers dubbed the event GRB 151027B, after the detection date and the fact that it was the second burst of the day. Swift automatically determined its location, broadcast the position to astronomers around the world, and turned to investigate the source with its own sensitive X-ray, ultraviolet and optical telescopes.

Astronomers classify GRBs by their duration. Like GRB 151027B, roughly 90 percent of bursts are of the "long" variety, where the gamma-ray pulse lasts more than two seconds. They are believed to occur in a massive star whose core has run out of fuel and collapsed into a black hole.

As matter falls toward the newly formed black hole, it launches jets of subatomic particles that move out through the star's outer layers at nearly the speed of light. When the particle jets reach the stellar surface, they emit gamma rays, the most energetic form of light. In many cases, the star is later seen to explode as a supernova.

"Short" bursts last less than two seconds -- and sometimes just thousandths of a second. Swift observations provide strong evidence these events are caused by mergers of orbiting neutron stars or black holes.

Once a GRB is identified, the race is on to observe its fading light with as many instruments as possible. Based on alerts from Swift, robotic observatories and human-operated telescopes turn to the blast site to measure its rapidly fading afterglow, which emits X-rays, ultraviolet, visible and infrared light, and radio waves. While optical afterglows are generally faint, they can briefly become bright enough to be seen with the unaided eye.

"Over the years, astronomers have constantly refined their techniques to get their telescopes onto the burst site in the shortest possible time," said John Nousek, Swift's director of mission operations and a professor of astronomy and astrophysics at Penn State University in University Park, Pennsylvania. "In fact, the process to follow up Swift GRB alerts is as productive as ever."

GRB 151027B provides a perfect example. Five hours after the Swift alert, the burst location first became visible from the European Southern Observatory (ESO) in Paranal, Chile. There a team led by Dong Xu of the Chinese National Astronomical Observatories in Beijing captured the afterglow's visible light using the Very Large Telescope's X-shooter spectrograph. The ESO observations show that light from the burst had been traveling to us for more than 12 billion years, placing it in the most distant few percent of GRBs Swift has recorded.

Astronomers now have distance measurements for about 30 percent of Swift GRBs, which makes it possible to investigate how these powerful events are distributed across space and time. The distance record is held by GRB 090429B, which exploded at the dawn of star formation in the universe. Its light took more than 13 billion years to reach Earth.

In addition to its GRB studies, Swift conducts multiwavelength observations of a wide array of astrophysical phenomena, from nearby comets and asteroids to faraway quasars and blazars, galaxies where supermassive black holes produce unpredictable high-energy flares.

"Swift is an amazingly versatile observatory, with gamma-ray burst detections every week, target-of-opportunity observations every day, and with a vast users' community covering all fields of astronomy," said Patrizia Caraveo, director of research at the Italian National Institute for Astrophysics in Milan and a co-investigator on Swift.

"Swift has been a fabulous discovery machine, finding previously unknown types of outbursts from stars, galaxies and from gamma-ray bursts themselves," said Julian Osborne, who leads the U.K. Swift team at the University of Leicester. "It's great to see our national contributions to the mission's X-ray and UV/optical telescopes having such a big impact."

With new types of astronomical observatories ramping up, Swift is poised to take on a new role. Ghostly particles called neutrinos have been detected from outside the solar system, and soon astronomers expect that gravitational wave observatories will detect the first ripples in space-time, a phenomenon predicted by Einstein's relativity theory. Swift scientists plan to use the satellite's capabilities to search for high-energy light associated with neutrino and gravitational wave sources.

Swift was launched on Nov. 20, 2004. Managed by NASA Goddard, the mission is operated in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Orbital Sciences Corporation in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy, with additional contributions from Germany and Japan.

Francis Reddy | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>