Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s Radiation Belt Storm Probes Ready for Space Environment Tests

07.12.2011
NASA’s Radiation Belt Storm Probes (RBSP), twin spacecraft being built and tested at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., are about to enter a challenging series of tests designed to certify that they are ready for their August 2012 launch and two-year mission in Earth’s orbit.

The coordinated measurements of the two RBSP spacecraft will advance our understanding of space weather and the sun’s influence on the Earth and near-Earth space by probing the planet’s radiation belts, which affect space weather and spacecraft operations.

Beginning the first week of December, RBSP will embark on a space environment test campaign that will last into March 2012. The RBSP team will subject the spacecraft to physical simulations of the stresses of launch and harshness of space operations, but in a controlled test facility where engineers can monitor the spacecrafts’ condition.

“These are complex spacecraft, each with five very sensitive scientific instruments on board,” says Jim Stratton, mission systems engineer for RBSP at the Applied Physics Lab. “The environmental tests are designed to really subject the spacecraft and systems to realistic, challenging conditions and make sure they are ready to fly.”

The first test will simulate the incredibly loud noises generated during launch and the beginning of supersonic travel, when the launch vehicle passes through the sound barrier (approximately 770 miles per hour). These sounds, which can reach a maximum of 134 decibels (nearly as loud as a jet engine from 100 feet away), will be duplicated by a specialized speaker system that is controlled via computer to match the sonic profiles of launch and supersonic barrier breakthrough. The RBSP satellites will be mated together and placed at the center of a circular wall of powerful loudspeakers for this test.

One of the substantial challenges for the probes is that they must survive launch as a single unit; later, above Earth, they will be separated and guided to their individual orbits.

RBSP will next undergo a vibration test. The spacecraft are mated together again and placed on a special table that will shake them to simulate the intense physical effects of launch, and make sure the probes’ systems and electronics are secure and will operate post-launch.

In January 2012, the spacecraft will undergo an electromagnetic compatibility and interference test. This involves turning on all of the spacecrafts’ internal systems without any external power or grounding to verify there are no electronic issues, and that RBSP can successfully perform its science-gathering mission.

RBSP will enter thermal vacuum testing in APL’s test chambers in February. For five weeks, the craft will endure heating and cooling cycles in a vacuum environment; during the lengthy testing, RBSP will also undergo a 10 day-long mission simulation. After that, in May 2012, the completed RBSP spacecraft are scheduled to leave APL and travel south. “The next six months are all about continuing the tremendous efforts of the outstanding team we have assembled for this mission,” says Rick Fitzgerald, program manager for RBSP at APL, “and getting ready to ship the spacecraft to Florida.”

RBSP is scheduled for launch no earlier than Aug. 15, 2012, from the Kennedy Space Center, Fla. APL built the RBSP spacecraft for NASA and manages the mission. The RBSP mission is part of NASA's Living With a Star program, guided by the Heliophysics Division of the NASA Headquarters Science Mission Directorate in Washington.

The program explores fundamental processes that operate throughout the solar system, in particular those that generate hazardous space weather effects near Earth and phenomena that could affect solar system exploration. Living With a Star is managed by NASA's Goddard Space Flight Center in Greenbelt, Md.

Learn more about the Radiation Belt Storm Probes, and see photos and videos of space environment testing, at http://rbsp.jhuapl.edu.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology.

Geoff Brown | Newswise Science News
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses
22.07.2019 | Universität Augsburg

nachricht Bridging the nanoscale gap: A deep look inside atomic switches
22.07.2019 | Tokyo Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>