Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Releases IRIS Footage of X-class Flare

18.09.2014

On Sept. 10, 2014, NASA's newest solar observatory, the Interface Region Imaging Spectrograph, or IRIS, mission joined other telescopes to witness an X-class flare – an example of one of the strongest solar flares -- on the sun. Combing observations from more than one telescope helps create a much more complete picture of such events on our closest star. Watch the movie to see how the flare appears different through the eyes of IRIS than it does through NASA's Solar Dynamics Observatory.

The movie shows IRIS imagery focused in on material at around 60,000 Kelvin (107,500 F), which highlights a low level of the sun's atmosphere, called the transition region. IRIS can zoom in on the transition region with unprecedented resolution.


Two views of an X-class solar flare on Sept. 10, 2014. IRIS focuses on the lower regions of the sun's atmosphere, while the SDO imagery shows a region that is hotter and typically slightly above that.

Image Credit: NASA/LMSAL/Wiessinger

The imagery on the right side is from SDO. The movie shows material at about 600,000 Kelvin (1,080,000 F), which highlights material typically higher up in the atmosphere in what's called the corona, (Although in a dynamic event such as a flare, hot and cold material often occur at the same heights.)

The IRIS video clearly shows a dark sunspot in the upper right, a magnetically complex  region observed on the sun's surface. SDO, on the other hand, shows what's happening above that – giant magnetic loops rise up off the surface. 

As the flare begins, crisp bright lines show up moving across the IRIS data, showing where material begins to be heated with the onset of the flare. Some of this imagery appears in the SDO side as well, but so do many other features and brightenings.  It is only by comparing the two movies that one can tease out what's happening at the lower temperatures – likely to be in the lower atmosphere – versus what is happening higher up.

IRIS must commit to pointing at certain sections of the sun at least a day in advance, so catching these eruptions in the act involves educated guesses and a little bit of luck. So far, IRIS has seen two X-class flares, and numerous M-class flares – X-class flares are the strongest flares, while M-class are a tenth as strong. These observations have offered some of the first comprehensive observations of what happens in the transition region during a flare.

Lockheed Martin’s Solar & Astrophysics Laboratory in Palo Alto, California, designed and manages the IRIS mission. NASA's Ames Research Center in Moffett Field, California, provides mission operations and ground data systems. NASA's Goddard Space Flight Center, in Greenbelt, Maryland, manages the Explorer Program for NASA's Science Mission Directorate in Washington, D.C.

Related Links

  For more information about IRIS, visit:

http://www.nasa.gov/iris


  For more on the Sept. 10, 2014 flare, visit:

http://www.nasa.gov/content/goddard/significant-flare-surges-off-the-sun/


  To download the high-resolution video, visit:

http://svs.gsfc.nasa.gov/vis/a010000/a011600/a011651/
 

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md
.

Susan Hendrix | Eurek Alert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>