NASA releases images of 1st notable solar flare of 2015

An M-class solar flare erupts from the right side of the sun in this image from shortly before midnight EST on Jan. 12, 2015. The image blends two wavelengths of light -- 171 and 304 angstroms -- as captured by NASA's Solar Dynamics Observatory. Credit: NASA/SDO

Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel.

To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings.

This flare is classified as an M5.6-class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares.

The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc.

Media Contact

Susan Hendrix
Susan.m.hendrix@nasa.gov
301-286-7745

 @NASAGoddard

http://www.nasa.gov/goddard 

Media Contact

Susan Hendrix EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors