Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Protects its super heroes from space weather

17.08.2017

It's not a bird or a plane but it might be a solar storm. We like to think of astronauts as our super heroes, but the reality is astronauts are not built like Superman who gains strength from the sun. In fact, much of the energy radiating from the sun is harmful to us mere mortals.

Outside Earth's protective magnetic field and atmosphere, the ionizing radiation in space will pose a serious risk to astronauts as they travel to Mars. High-energy galactic cosmic rays (GCRs) which are remnants from supernovas and solar storms like solar particle events (SPEs) and coronal mass ejections (CMEs) from the sun can cause harm to the body and spacecraft. These are all components of space weather.


NASA's Human Research Program aims to mitigate the harmful effects of the space radiation environment on astronaut health outside of the relative protection of the Earth's magnetosphere.

Credit: NASA/SOHO

When astronauts travel in space they can't see or even feel radiation. However, NASA's Human Research Program (HRP) is studying the effects radiation plays on the human body and developing ways to monitor and protect against this silent hazard.

"Dosimeters and modeling techniques are used to determine how much energy is deposited in the space explorer's bodies along with inflight tools to try to estimate what type of biological effects they might be experiencing," said Tony Slaba, Ph.D., NASA research physicist.

"Solar storms can cause acute radiation sickness during space flight which has to be dealt with in real time. There's also an additional risk from exposure to GCRs which may cause central nervous system effects and delayed effects related to cancer and cardiovascular disease after the mission."

While shielding strategies for GCRs remain difficult due to their extremely high energies, pharmaceutical countermeasures may be more effective than thick shielding to protect the crew from GCRs. NASA also is developing space weather forecasting tools to provide advance warning of SPEs. Solar protons can be easily shielded against for protection.

The HRP is performing a variety of research to identify and validate biological countermeasures for protection. It researches an array of shielding design strategies that include ways to mitigate exposure from all forms of space weather. Historical worst and best case space weather scenarios are used to drive designs. Habitat design and overall vehicle optimization is being investigated to reduce the inflight risks from solar storms. These design strategies, coupled with the human research on the biological effects of space radiation will allow astronauts to travel farther from Earth than ever before.

As NASA embarks on the next big journey to send humans to Mars, it is imperative to protect our super heroes against the dangers of space. By implementing the best methods and technologies against the villain of space radiation, the journey may not be faster than a speeding bullet, but it will be safer.

###

NASA's Human Research Program (HRP) is dedicated to discovering the best methods and technologies to support safe, productive human space travel. HRP enables space exploration by reducing the risks to astronaut health and performance using ground research facilities, the International Space Station, and analog environments. This leads to the development and delivery of a program focused on: human health, performance, and habitability standards; countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies. HRP supports innovative, scientific human research by funding more than 300 research grants to respected universities, hospitals and NASA centers to over 200 researchers in more than 30 states.

Amy Blanchett
Laurie Abadie
NASA Human Research Strategic Communications

https://youtu.be/sK-IDNBPIM4

Amy Blanchett | EurekAlert!

More articles from Physics and Astronomy:

nachricht Images from NJIT's big bear solar observatory peel away layers of a stellar mystery
18.11.2019 | New Jersey Institute of Technology

nachricht A one-way street for light
15.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>