Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Names Telescope After Chicago Scientist

28.08.2008
NASA’s Gamma-ray Large Area Space Telescope has joined the constellation of satellites named after University of Chicago scientists. Today, NASA announced that the Gamma-ray Large Area Space Telescope will be called the Enrico Fermi Gamma-ray Space Telescope.

“This satellite will collect gamma rays from the most energetic regions of our galaxy and beyond,” said Simon Swordy, Director of the University of Chicago’s Enrico Fermi Institute. “Working in the Research Institutes building on Ellis Avenue in the late 1940s, Enrico Fermi produced the first quantitative ideas on how cosmic particles could reach the enormous energies needed to produce these cosmic-gamma rays. It is wonderful to hear that NASA has decided to dedicate this satellite to him.”

NASA launched the telescope on a Delta II rocket on June 11. The telescope’s mission is to collect data on black holes, gamma-ray bursts—the most powerful explosions in the universe—and other cosmic phenomena produced at extreme energies.

Fermi received the Nobel Prize in 1938 for his discovery of new radioactive elements produced by the addition of neutrons to the cores of atoms, and for the discovery of nuclear reactions brought about by slowly moving neutrons.

A member of the Chicago faculty from 1946 until his death in 1954, Fermi conducted pioneering research on the most powerful subatomic particle accelerator of its day. As a member of the Manhattan Project during World War II, he oversaw construction of the first nuclear reactor.

The Hubble Space Telescope, the Compton Gamma-ray Observatory and the Chandra X-ray Observatory preceded the Fermi Telescope.

The Hubble Telescope, launched aboard the space shuttle Discovery in 1990, is named for Edwin Hubble, who earned his bachelor’s degree at the University in 1910 and his doctorate in 1917. Hubble showed that other galaxies existed in the universe, and that the universe is expanding. These findings form the cornerstone of the big bang theory of the universe’s origin and opened the field of cosmology.

The Compton Gamma-ray Observatory, launched aboard the space shuttle Atlantis in 1991, is named for Arthur Holly Compton, who served on the University of Chicago faculty from 1923 to 1945. Compton earned the 1927 Nobel Prize in physics for his scattering experiment, which demonstrated that light has characteristics of both a wave and a particle. NASA deorbited the Compton Observatory in June 2000.

The Chandra X-ray Observatory, launched aboard the space shuttle Columbia in 1999, is named for pioneering University of Chicago astrophysicist Subrahmanyan Chandrasekhar. Chandrasekhar received the 1983 Nobel Prize in physics for his studies on the physical processes important to the structure and evolution of stars. He served on the Chicago faculty from 1937 until his death in 1995 at the age of 84. His major discoveries across the field of astrophysics spanned more than 60 years.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>