Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA missions monitor a waking black hole

01.07.2015

NASA's Swift satellite detected a rising tide of high-energy X-rays from the constellation Cygnus on June 15, just before 2:32 p.m. EDT. About 10 minutes later, the Japanese experiment on the International Space Station called the Monitor of All-sky X-ray Image (MAXI) also picked up the flare.

The outburst came from V404 Cygni, a binary system located about 8,000 light-years away that contains a black hole. Every couple of decades the black hole fires up in an outburst of high-energy light, becoming an X-ray nova. Until the Swift detection, it had been slumbering since 1989.


This is an artist's interpretation of Swift J1745-26, a newly discovered black hole with a flaring accretion disk. Downloadable: http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110

Credit: NASA SVS

An X-ray nova is a bright, short-lived X-ray source that reaches peak intensity in a few days and then fades out over a period of weeks or months. The outburst occurs when stored gas abruptly rushes toward a neutron star or black hole. By studying the patterns of the X-rays produced, astronomers can determine the kind of object at the heart of the eruption.

"Relative to the lifetime of space observatories, these black hole eruptions are quite rare," said Neil Gehrels, Swift's principal investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "So when we see one of them flare up, we try to throw everything we have at it, monitoring across the spectrum, from radio waves to gamma rays."

Astronomers classify this type of system as a low-mass X-ray binary. In V404 Cygni, a star slightly smaller than the sun orbits a black hole 10 times its mass in only 6.5 days. The close orbit and strong gravity of the black hole produce tidal forces that pull a stream of gas from its partner. The gas travels to a storage disk around the black hole and heats up to millions of degrees, producing a steady stream of X-rays as it falls inward.

But the disk flips between two dramatically different conditions. In its cooler state, the gas resists inward flow and just collects in the outer part of the disk like water behind a dam. Inevitably the build-up of gas overwhelms the dam, and a tsunami of hot bright gas rushes toward the black hole.

Astronomers relish the opportunity to collect simultaneous multiwavelength data on black hole binaries, especially one as close as V404 Cygni. In 1938 and 1956, astronomers caught V404 Cygni undergoing outbursts in visible light. During its eruption in 1989, the system was observed by Ginga, an X-ray satellite operated by Japan, and instruments aboard Russia's Mir space station.

"Right now, V404 Cygni shows exceptional variation at all wavelengths, offering us a rare chance to add to this unique data set," said Eleonora Troja, a Swift team member at Goddard.

Ongoing or planned satellite observations of the outburst involve NASA's Swift satellite, Chandra X-ray Observatory and Fermi Gamma-ray Space Telescope, as well as Japan's MAXI, the European Space Agency's INTEGRAL satellite, and the Italian Space Agency's AGILE gamma-ray mission. Ground-based facilities following the eruption include the 10.4-meter Gran Telescopio Canarias operated by Spain in the Canary Islands, the University of Leicester's 0.5-meter telescope in Oadby, U.K., the Nasu radio telescope at Waseda University in Japan, and amateur observatories.

V404 Cygni has flared many times since the eruption began, with activity ranging from minutes to hours. "It repeatedly becomes the brightest object in the X-ray sky -- up to 50 times brighter than the Crab Nebula, which is normally one of the brightest sources," said Erik Kuulkers, the INTEGRAL project scientist at ESA's European Space Astronomy Centre in Madrid. "It is definitely a 'once in a professional lifetime' opportunity."

In a single week, flares from V404 Cygni generated more than 70 "triggers" of the Gamma-ray Burst Monitor (GBM) aboard Fermi. This is more than five times the number of triggers seen from all objects in the sky in a typical week. The GBM triggers when it detects a gamma-ray flare, then it sends numerous emails containing increasingly refined information about the event to scientists on duty.

Every time the GBM recovered from one trigger, V404 Cygni set it off again, resulting in a torrent of emails. The event prompted David Yu, a GBM scientist at the Max Planck Institute of Extraterrestrial Physics in Garching, Germany, to comment on social media: "Achievement Unlocked: Mailbox spammed by a blackhole."

Lynn Chandler | EurekAlert!

More articles from Physics and Astronomy:

nachricht Hubble watches interstellar comet Borisov speed past the sun
13.12.2019 | ESA/Hubble Information Centre

nachricht NASA Mission Delivers Best-ever Pulsar Measurements - Research Group of TU Darmstadt involved
13.12.2019 | Technische Universität Darmstadt

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

New yeast species discovered in Braunschweig, Germany

13.12.2019 | Life Sciences

Hubble watches interstellar comet Borisov speed past the sun

13.12.2019 | Physics and Astronomy

Saliva test shows promise for earlier and easier detection of mouth and throat cancer

13.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>