Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-funded ELFIN to study how electrons get lost

17.09.2018

Three hundred and ten miles above our planet's surface, near-Earth space is abuzz with action. Here begin the Van Allen Belts, a pair of concentric rings of fast-moving particles and intense radiation that extends more than 30,000 miles farther into space. For the most part these particles are confined to this special region, spiraling along Earth's magnetic field lines. But sometimes they come too close and crash into our atmosphere -- creating the eye-catching diffuse red aurora, but also potentially interfering with critical communications and GPS satellites that we depend on every day.

A new CubeSat mission called The Electron Losses and Fields Investigation, or ELFIN, will study one of the processes that allows energetic electrons to escape the Van Allen Belts and fall into Earth. ELFIN is set to launch from the Vandenburg Air Force Base in California on Sept. 15, 2018.


An artist's depiction of the Van Allen Belts, showing Earth's magnetic field lines and the trajectories of charged particles trapped by them. The twin ELFIN spacecraft are shown following their inclined polar orbit, traced in yellow.

Credit: UCLA EPSS/NASA SVS


The twin ELFIN CubeSats.

Credit: UCLA EPSS

When magnetic storms form in near-Earth space, they create waves that jiggle Earth's magnetic field lines, kicking electrons out of the Van Allen Belts and down into our atmosphere. ELFIN aims to be the first to simultaneously observe this electron precipitation while also verifying the causal mechanism, measuring the magnetic waves and the resulting "lost" electrons.

Funded by NASA, The National Science Foundation, and industry partners, ELFIN is a CubeSat mission. CubeSats are small and lightweight satellites, measured in standardized 10-by-10-by-10 cubic centimeter units, that are comparatively quick to develop and come with a price tag at a fraction of larger satellite missions. ELFIN uses two identical 3U, or 3 cubic unit, CubeSats -- both about the size of a loaf of bread.

By using two satellites instead of one, ELFIN will be able to measure how the precipitated electrons vary across space and time. Designed, built and tested by a team of 250 UCLA students over five years, ELFIN will be the first satellite developed, managed and operated entirely by UCLA.

A key advantage of CubeSats is that they allow an inexpensive means to engage students in all phases of satellite development, operation and exploitation through real-world, hands-on research and development experience.

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA.

These miniature satellites provide a low-cost platform for NASA missions, including planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

On launch day, ELFIN will hitch a ride as a secondary payload on a Delta II rocket with NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2 mission. ICESat-2 will measure the thickness of ice sheets, glaciers, sea ice and more to document how Earth's cryosphere -- the frozen water part of the Earth system -- is changing over time.

Miles Hatfield | EurekAlert!
Further information:
https://www.nasa.gov/feature/goddard/2018/nasa-funded-elfin-to-study-how-electrons-get-lost

More articles from Physics and Astronomy:

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Heavy-electron quantum criticality and single-particle spectroscopy
02.04.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Most of Earth's carbon was hidden in the core during its formative years

02.04.2020 | Earth Sciences

Discovery of life in solid rock deep beneath sea may inspire new search for life on Mars

02.04.2020 | Life Sciences

Geneticists are bringing personal medicine closer to recently admixed individuals

02.04.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>