Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Kepler Mission Discovers Two Planets Transiting Same Star

27.08.2010
NASA's Kepler Mission has discovered the first confirmed planetary system with more than one planet transiting the same star.

Today's announcement of the discovery of the two planets, Kepler 9b and 9c, is based on seven months of observations of more than 156,000 stars being monitored for subtle brightness changes as part of an ongoing search for Earth-like planets outside our solar system. Scientists designated the sun-like star Kepler-9.

The inner world, Kepler 9-b, orbits its star every 19.2 days at a distance of 13 million miles, while the outer world orbits once in 38.9 days at a distance of 21 million miles. (In comparison, Mercury has an orbital period of 88 days.) They orbit nearly in resonance, with the inner planet completing two orbits for every one of the outer planet. Both are Saturn-sized gas giants, with the inner world weighing in at 0.25 Jupiter mass (80 Earths) while the outer world is a slimmer 0.17 Jupiter mass (54 Earths).

"This is the first confirmed system of more than one planet transiting the same star," said Matthew Holman, a Kepler Mission scientist from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. Scientists confirmed the multiple transits with radial velocity observations conducted at the W.M Keck Observatory in Hawaii.

Holman said systems with multiple transiting planets are particularly rich with information that provides clues as to the physical characteristics. Specifically, astronomers can measure how the time between successive transits changes from orbit to orbit due to mutual gravity between the two worlds. "We can actually see evidence of the gravitational interaction of these two planets through the deviations in their transit times," Holman said.

"This discovery is the first clear detection of transit timing variations," he added.

In addition to the two confirmed giant planets, Holman said Kepler scientists also identified an additional "super-Earth-size" transiting planet candidate that will need additional observations to confirm if it is indeed a planet or merely a false alarm. Current observations suggest that the planetary candidate might be about 1.5 times the size of Earth and orbits the star once every 1.6 days at a distance of only 2.5 million miles.

Kepler, a space-based observatory, looks for the signatures of planets by measuring tiny decreases in the brightness of stars when planets cross in front of, or transit them. The size of the planet can be derived from the change in the star's brightness. In June, mission scientists announced the mission has identified more than 700 planet candidates, including five systems with more than one planet candidate. This is the first of those systems to be confirmed.

The 28-member Kepler science team is using ground-based telescopes and the Hubble Space Telescope and Spitzer Space Telescope to perform follow-up observations on 400 of the planet candidates. The star field that Kepler observes in the constellations Cygnus and Lyra can only be seen from ground-based observatories in spring through early fall. The data from these observations will determine which of the candidates can be identified as planets.

Without the additional information, candidates that are actual planets cannot be distinguished from false alarms, such as binary stars -- two stars that orbit each other. The size of the planetary candidates also can be only approximated until the size of the stars they orbit is determined from additional spectroscopic observations made by ground-based telescopes. In the case of Kepler-9, the planetary nature was first confirmed by the scale of the transit timing variations and was further verified by radial velocity measurements.

Kepler will continue conducting science operations until at least November 2012, searching for planets as small as Earth, including those that orbit stars in a warm habitable zone where liquid water could exist on the surface of the planet. Since transits of planets in the habitable zone of solar-like stars occur about once a year and require three transits for verification, it is expected to take at least three years to locate and verify an Earth-size planet.

This press release is being issued jointly with NASA.

Ames Research Center is responsible for the ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed the Kepler mission development. Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system, and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu
J.D. Harrington
NASA Headquarters, Washington
202-358-5241
j.d.harrington@nasa.gov
Michael Mewhinney
Ames Research Center
650-604-3937
michael.s.mewhinney@nasa.gov

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu
http://www.cfa.harvard.edu/news/2010/pr201013.html

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>