Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's AIM Satellite and Models are Unlocking the Secrets of Mysterious "Night-Shining" Clouds

17.12.2009
NASA's Aeronomy of Ice in the Mesosphere (AIM) satellite has captured five complete polar seasons of noctilucent (NLC) or "night-shining" clouds with an unprecedented horizontal resolution of 3 miles by 3 miles. Results show that the cloud season turns on and off like a "geophysical light bulb" and they reveal evidence that high altitude mesospheric "weather" may follow similar patterns as our ever-changing weather near the Earth's surface. These findings were unveiled today at the Fall Meeting of the American Geophysical Union today in San Francisco.

The AIM measurements have provided the first comprehensive global-scale view of the complex life cycle of these clouds, also called Polar Mesospheric Clouds (PMCs), over three entire Northern Hemisphere and two Southern Hemisphere seasons revealing more about their formation, frequency and brightness and why they appear to be occurring at lower latitudes than ever before.

"The AIM findings have altered our previous understanding of why PMCs form and vary," stated AIM principal investigator Dr. James Russell III of Hampton University in Hampton, Va. "We have captured the brightest clouds ever observed and they display large variations in size and structure signifying a great sensitivity to the environment in which the clouds form. The cloud season abruptly turns on and off going from no clouds to near complete coverage in a matter of days with the reverse pattern occurring at the season end."

These bright "night-shining" clouds, which form 50 miles above Earth's surface, are seen by the spacecraft's instruments, starting in late May and lasting until late August in the north and from late November to late February in the south. The AIM satellite reports daily observations of the clouds at all longitudes and over a broad latitude range extending from 60 to 85 degrees in both hemispheres.

The clouds usually form at high latitudes during the summer of each hemisphere. They are made of ice crystals formed when water vapor condenses onto dust particles in the brutal cold of this region, at temperatures around minus 210 to minus 235 degrees Fahrenheit. They are called "night shining" clouds by observers on the ground because their high altitude allows them to continue reflecting sunlight after the sun has set below the horizon. They form a spectacular silvery blue display visible well into the night time.

Sophisticated multidimensional models have also advanced significantly in the last few years and together with AIM and other space and ground-based data have led to important advances in understanding these unusual and provocative clouds. The satellite data has shown that:

1. Temperature appears to control season onset, variability during the season, and season end. Water vapor is surely important but the role it plays in NLC variability is only now becoming more understood,

2. Large scale planetary waves in the Earth's upper atmosphere cause NLCs to vary globally, while shorter scale gravity waves cause the clouds to disappear regionally;

3. There is coupling between the summer and winter hemispheres: when temperature changes in the winter hemisphere, NLCs change correspondingly in the opposite hemisphere.

Computer models that include detailed physics of the clouds and couple the upper atmosphere environment where they occur with the lower regions of the atmosphere are being used to study the reasons the NLCs form and the causes for their variability. These models are able to reproduce many of the features found by AIM. Validation of the results using AIM and other data will help determine the underlying causes of the observed changes in NLCs.

The AIM results were produced by Mr. Larry Gordley and Dr. Mark Hervig and the Solar Occultation for Ice Experiment (SOFIE) team, Gats, Inc., Newport News, Va. and Dr. Cora Randall and the Cloud Imaging and Particle Size (CIPS) experiment team, University of Colorado, Laboratory for Atmospheric and Space Physics in Boulder and Dr. Scott Bailey, Va. Tech, Blacksburg, Va.; Modeling results were developed by Dr. Daniel Marsh of the National Center for Atmospheric Research in Boulder, Colorado and Professor Franz-Josef Lübken of the Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany.

AIM is a NASA-funded SMall EXplorers (SMEX) mission. NASA's Goddard Space Flight Center manages the program for the agency's Science Mission Directorate at NASA Headquarters in Washington. The mission is led by the Principal Investigator from the Center for Atmospheric Sciences at Hampton University in VA. Instruments were built by the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado, Boulder, and the Space Dynamics Laboratory, Utah State University. LASP also manages the AIM mission and controls the satellite. Orbital Sciences Corporation, Dulles, Va., designed, manufactured, and tested the AIM spacecraft, and provided the Pegasus launch vehicle.

Cynthia O'Carroll | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/aim/news/nlc-secrets.html

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>