Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructures filter light to order

07.11.2013
Arrays of nanoscale pillars made to reflect light of a selected color could find application as optical filters in digital cameras

A beam of sunlight is a mixture of different-colored light, including all the colors of the rainbow. Filtering or blocking a specific color, or colors, is often important in photography, color displays and other imaging techniques.


Altering the size and separation of these nanoscale mirrors changes the color of light that they reflect.
Copyright : 2013 A*STAR Institute of Materials Research and Engineering

An international team of engineers has now fabricated arrays of silver nanoscale pillars that can selectively reflect light of any desired color1. The team, led by Jinghua Teng and Yan Jun Liu at the A*STAR Institute of Materials Research and Engineering in Singapore, show that the color can be selected by varying the size of the pillars.

The stained glass in the windows of a church owes its color in part to an effect called surface plasmon resonance: light passing through the window interacts with electrons in the nanometer-sized metallic impurities that are trapped in the glass.

Light of a specific color, or wavelength, forces these electrons to quickly oscillate. In turn, the oscillating electrons enhance the amount of light transmitted through the glass at this wavelength. Teng, Liu and their co-workers were able to transfer this plasmonic effect from light-transmitting windows to light-reflecting mirrors. “Our compact reflectors could be used for applications including color coding, anti-counterfeiting and product branding,” says Teng.

The researchers deposited 6 nanometers of titanium, followed by 180 nanometers of silver on a quartz substrate. Onto the silver layer, they etched arrays of cylinders with diameters of 300 to 500 nanometers and a center-to-center separation of 320 to 540 nanometers (see image). The resulting gap between some of the pillars was as small as 20 nanometers. To achieve these tiny features, the team used a technique called electron-beam lithography: they scanned a beam of electrons to pattern the required features onto a protective layer placed on top of the silver. Then, they used a stream of charged ion atoms to mill the exposed metal and create the nanopillars.

After construction, Teng, Liu and their team shone white light onto each of the arrays and measured the wavelength of the reflected radiation. Arrays of cylinders of 500 nanometers in diameter and separated by 40 nanometers appeared red because they predominantly reflected light with a wavelength of 630 nanometers. Similarly, pillars with a diameter of 300 nanometers and a separation of 20 nanometers appeared blue as they reflected light with a 490-nanometer wavelength.

“We are now working to further develop this technique to create large-area color displays,” says Teng. “We also aim to develop applications and collaborations with industry.”

Journal information

Si, G., Zhao, Y., Lv, J., Lu, M., Wang, F. et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>