Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructures filter light to order

07.11.2013
Arrays of nanoscale pillars made to reflect light of a selected color could find application as optical filters in digital cameras

A beam of sunlight is a mixture of different-colored light, including all the colors of the rainbow. Filtering or blocking a specific color, or colors, is often important in photography, color displays and other imaging techniques.


Altering the size and separation of these nanoscale mirrors changes the color of light that they reflect.
Copyright : 2013 A*STAR Institute of Materials Research and Engineering

An international team of engineers has now fabricated arrays of silver nanoscale pillars that can selectively reflect light of any desired color1. The team, led by Jinghua Teng and Yan Jun Liu at the A*STAR Institute of Materials Research and Engineering in Singapore, show that the color can be selected by varying the size of the pillars.

The stained glass in the windows of a church owes its color in part to an effect called surface plasmon resonance: light passing through the window interacts with electrons in the nanometer-sized metallic impurities that are trapped in the glass.

Light of a specific color, or wavelength, forces these electrons to quickly oscillate. In turn, the oscillating electrons enhance the amount of light transmitted through the glass at this wavelength. Teng, Liu and their co-workers were able to transfer this plasmonic effect from light-transmitting windows to light-reflecting mirrors. “Our compact reflectors could be used for applications including color coding, anti-counterfeiting and product branding,” says Teng.

The researchers deposited 6 nanometers of titanium, followed by 180 nanometers of silver on a quartz substrate. Onto the silver layer, they etched arrays of cylinders with diameters of 300 to 500 nanometers and a center-to-center separation of 320 to 540 nanometers (see image). The resulting gap between some of the pillars was as small as 20 nanometers. To achieve these tiny features, the team used a technique called electron-beam lithography: they scanned a beam of electrons to pattern the required features onto a protective layer placed on top of the silver. Then, they used a stream of charged ion atoms to mill the exposed metal and create the nanopillars.

After construction, Teng, Liu and their team shone white light onto each of the arrays and measured the wavelength of the reflected radiation. Arrays of cylinders of 500 nanometers in diameter and separated by 40 nanometers appeared red because they predominantly reflected light with a wavelength of 630 nanometers. Similarly, pillars with a diameter of 300 nanometers and a separation of 20 nanometers appeared blue as they reflected light with a 490-nanometer wavelength.

“We are now working to further develop this technique to create large-area color displays,” says Teng. “We also aim to develop applications and collaborations with industry.”

Journal information

Si, G., Zhao, Y., Lv, J., Lu, M., Wang, F. et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>