Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoscale electrical phenomenon discovered

19.05.2010
At the scale of the very small, physics can get peculiar. A University of Michigan biomedical engineering professor has discovered a new instance of such a nanoscale phenomenon—one that could lead to faster, less expensive portable diagnostic devices and push back frontiers in building micro-mechanical and "lab on a chip" devices.

In our macroscale world, materials called conductors effectively transmit electricity and materials called insulators or dielectrics don't, unless they are jolted with an extremely high voltage. Under such "dielectric breakdown" circumstances, as when a bolt of lightening hits a rooftop, the dielectric (the rooftop in this example) suffers irreversible damage.

This isn't the case at the nanoscale, according to a new discovery by Alan Hunt, an associate professor in the Department of Biomedical Engineering. Hunt and his research team were able to get an electric current to pass nondestructively through a sliver of glass, which isn't usually a conductor.

A paper on the research is newly published online in Nature Nanotechnology.

"This is a new, truly nanoscale physical phenomenon," Hunt said. "At larger scales, it doesn't work. You get extreme heating and damage.

"What matters is how steep the voltage drop is across the distance of the dielectric. When you get down to the nanoscale and you make your dielectric exceedingly thin, you can achieve the breakdown with modest voltages that batteries can provide. You don't get the damage because you're at such a small scale that heat dissipates extraordinarily quickly."

These conducting nanoscale dielectric slivers are what Hunt calls liquid glass electrodes, fabricated at the U-M Center for Ultrafast Optical Science with a femtosecond laser, which emits light pulses that are only quadrillionths of a second long.

The glass electrodes are ideal for use in lab-on-a-chip devices that integrate multiple laboratory functions onto one chip just millimeters or centimeters in size. The devices could lead to instant home tests for illnesses, food contaminants and toxic gases. But most of them need a power source to operate, and right now they rely on wires to route this power. It's often difficult for engineers to insert these wires into the tiny machines, Hunt said.

"The design of microfluidic devices is constrained because of the power problem," Hunt said. "But we can machine electrodes right into the device."

Instead of using wires to route electricity, Hunt's team etches channels through which ionic fluid can transmit electricity. These channels, 10 thousand times thinner than the dot of this "i," physically dead-end at their intersections with the microfluidic or nanofluidic channels in which analysis is being conducted on the lab-on a-chip (this is important to avoid contamination). But the electricity in the ionic channels can zip through the thin glass dead-end without harming the device in the process.

This discovery is the result of an accident. Two channels in an experimental nanofluidic device didn't line up properly, Hunt said, but the researchers found that electricity did pass through the device.

"We were surprised by this, as it runs counter to accepted thinking about the behavior of nonconductive materials," Hunt said. "Upon further study we were able to understand why this could happen, but only at the nanometer scale."

As for electronics applications, Hunt said that the wiring necessary in integrated circuits fundamentally limits their size.

"If you could utilize reversible dielectric breakdown to work for you instead of against you, that might significantly change things," Hunt said.

The paper is called "Liquid glass electrodes for nanofluidics." This research is funded by the National Institutes of Health.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference. Find out more at www.engin.umich.edu.

Contact: Nicole Casal Moore
Phone: (734) 647-7087

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Ferchau Engineering Science TV microfluidic device toxic gas

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>