Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles increase biofuel performance

08.04.2011
How to put more bang in your biofuels? Nanoparticles! A new study in the Journal of Renewable and Sustainable Energy shows that the addition of alumina nanoparticles can improve the performance and combustion of biodiesel, while producing fewer emissions.

Why add nanoparticles? The idea, says lead author R. B. Anand, an associate professor of mechanical engineering at the National Institute of Technology in Tiruchirappalli, India, is that because of their high surface-to-volume ratio, the nanoparticles—which, in the study, had an average diameter of 51 billionths of a meter—have more reactive surfaces, allowing them to act as more efficient chemical catalysts, thus increasing fuel combustion. The presence of the particles also increases fuel–air mixing in the fuel, which leads to more complete burning.

In the study, Anand and co-author J. Sadhik Basha first used a mechanical agitator to create an emulsion consisting of jatropha biodiesel (a fuel derived from the crushed seeds of the jatropha plant), water, and a surfactant, then blended in different proportions of alumina nanoparticles. In addition to outperforming regular biofuel, the nanoparticle-spiked fuels produced significantly lower quantities of nitrogen oxide and carbon monoxide gases, and created less smoke.

The researchers are now testing other types of nanoparticles, including hollow carbon nanotubes, and investigating the effects of nano-additives to engine lubrication and cooling systems. One obstacle to the application of this kind of nanotechnology is the high cost of nanoparticle production, says Anand—who also cautions that nanoparticles "should be used judiciously," because they tend to "entrain into human bodies."

The article, "Role of nano-additive blended biodiesel emulsion fuel on the working characteristics of a diesel engine," by R. B. Anand and J. Sadhik Basha, appears in the Journal of Renewable and Sustainable Energy.

About the Journal of Renewable and Sustainable Energy

The Journal of Renewable and Sustainable Energy, published by the American Institute of Physics, is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. Content is published online daily, collected into bimonthly issues (6 times a year). As an electronic-only, web-based journal with rapid publication time, JRSE is responsive to the many new developments expected in this field. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.

About AIP

The American Institute of Physics is an organization of 10 physical sciences societies representing more than 135,000 scientists, engineers, and educators and is one of the largest publishers of scientific information in physics. AIP also delivers valuable resources and expertise in education and student services, science communication, government relations, career services for science and engineering professionals, statistical research, industrial outreach, and the history of physics and other sciences. Offering publishing solutions for scientific societies and organizations in science and engineering, AIP pursues innovation in electronic publishing of scholarly journals. AIP publishes 13 journals (journals.aip.org), 2 magazines—including its flagship publication, Physics Today—and the AIP Conference Proceedings series. Scitation, AIP's online publishing platform, hosts 1.6 million articles from 190 scholarly journals, proceedings, and eBooks of learned society publishers. AIP also provides the international physical science community with UniPHY, the first literature-based social and professional networking site; it features pre-populated profiles of more than 300,000 scientists and enables collaboration among researchers worldwide.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>